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Analysis and relief method of reentry aerodynamic load
based on matched asymptotic expansions method”
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Abstract

Reentry velocity of lunar module reaches the second cosmic velocity, which could make the aerodynamic environment
insupportable. So it is essential to analysis the reentry aerodynamic load. The equation of motion for reentry vehicle
is a group of ordinary differential equations, and numerical methods are inadequate for online mission because their
computation amount is too large. An analytical method of solving the reentry equation of motion is proposed in
this paper to analyze the reentry aerodynamic load. First, matched asymptotic method is used to obtain solutions of
longitudinal equation of motion in outer and inner region independently and combine them to obtain a unified closed-
form solution. Reentry aerodynamic load has been analyzed in three fragments using the closed-form solution, and
approximate solution of load is compared with the exact solution. Second, suppositional initial conditions are obtained
by solving the closed-form solution using current state, then an analytical method of predicting the first load peak is
proposed, and the relative prediction error is analyzed for different bank angles. Third, the load relief method based on
load peak prediction is proposed, which can redistribute the total dissipated energy in the whole reentry process, and

the validity of the method is verified by Monte Carlo simulation.

Keywords: reentry aerodynamic load, matched asymptotic expansion, closed-form approximate solution,

load relief
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