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Fig. 4. Mean streamlines and thermal plumes at Ra = 10°: (a) Mean streamlines; (b) mean thermal plumes.
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Fig. 5. Mean streamlines and thermal plumes at Ra = 2 x 10'0: (a) Mean streamlines; (b) mean thermal plumes.
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Direct solution method of efficient large-scale parallel
computation for 3D turbulent Rayleigh-Bénard
convection”
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Abstract

Research of turbulence Rayleigh-Bénard convection with high Ra number is a hot topic in physics research in the
world. DNS simulation is one of the important means to study the subject. The computing work is hard to achieve when
the calculation size is increased and the grid number is bigger. Numerical simulation for high Ra turbulent convection
faces some major challenges. So the direct (non iterative) solution method of efficient large-scale parallel computation
for the 3D turbulent convection is created in this paper. Main difficulties are the parallel computing technology for
the pressure Poisson equation. The mass efficient parallel approximate solution with the block tridiagonal equations of
OpenMP and MPI used simultaneously after decoupling pressure Poisson equation using FFT is presented. Through the
validation of the efficiency of this method in parallel computing, the new method for direct solution of parallel computing
have good parallel efficiency and computational time. Results of thermal convection in 3D narrow cavity show that the
convection characteristics calculated by using the new method is reasonable. The direct solution method for efficient
large-scale parallel computation of 3D turbulent convection created in this paper also is likely to be a breakthrough in

computing technology about efficient large-scale parallel computing incompressible NS equations in some special cases.

Keywords: direct solution method of Poisson equation, parallel computation, Rayleigh-Bénard convec-

tion, direct numerical simulation
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