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Fig. 1. Schematic of a single-pixel KID layout: (a) The lumped-element LC resonator consists of a

tantalum interdigitated capacitor and an aluminum inductor; (b) The inductor also functions as the
absorber, designed to operate at 15 THz; (c) Measured transmission coefficient of the filter stack and

simulated average dual-polarization absorption efficiency of the inductor-absorber.
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Fig. 2. System-corrected microwave transmission S>; as a function of blackbody temperature at a
fixed bath temperature of 100 mK: (a) Magnitude |S21]. The inset shows a resonance circle (blue solid
line) at Ty,=5 K and noise stream points both on- (magenta dots) and off- (green dots) resonance.
The tangential direction is referred to as the phase/frequency direction. The normal direction is
referred to as the amplitude/dissipation direction; (b) Resonance circles (solid lines) obtained by
frequency sweeps and the quasiparticle trajectory (filled circles) in the complex plane. The dashed
arrow indicates increasing frequency. In the last circle, we show the translation of the response into
an amplitude, 4, and a phase, 6.
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Fig. 3. Optical characterization of the KID at a bath temperature of 100 mK: (a) Fractional frequency
shift and (b) dissipation as a function of radiation power (P,,q). The solid blue curves are fits to Eq.
(9), with the vertical dashed lines indicating the fitted parameter P,. The insets show the same data
on a linear scale, alongside fits assuming constant responsivity (solid pink) for comparison; (c) On-
resonance (solid) and off-resonance (dotted) fractional frequency noise and (d) dissipation noise
under various optical loads; (e) Fractional frequency NEP and (f) dissipation NEP, referenced to
absorbed power (P,,), as a function of modulation frequency for different absorbed powers; (g), (h)
The corresponding NEPs at a fixed modulation frequency of 300 Hz as a function of P, compared
with the photon-noise limit (solid blue curve).
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Fig. 4. Measured optical NEP as a function of absorbed power. The data, referenced to absorbed

power, were taken at modulation frequencies of 1, 10, and 100 Hz for (a) frequency readout and (b)
dissipation readout.
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(GR) noise. The blue dots represent the photon noise limit, the pink dashed line denotes the GR noise

limit (Tgp=120 ps), and the green solid line corresponds to the combined limit when both noise

sources are present. Points A, B, C. D, and E are the five operating points planned for NEP

measurement.
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FEMED, M H T K AR U B[R] (FEAS [F) LA AR HEAT AR &
B Wi IS Ry 3 5 400 AR O A Al £ MRS BB AT B A S, AHBUVIME S
i pTide, HO SRARPERAS E RIR TR REEER (40 10 mK A6, 1 mK ZiAa

SENED) FEAR, ELI R a8k COGIEANR AR 50, dake 1 AR i) v AR A U
AW, &M RERAE KRR 2E AR EE KID J62# i N B2 A NEP )77V

EEVII R, A3 (8) AYPIREIEI N EAE R IL T Mattis-Bardeen #i, i&H]

TR TR ER N AE R s S gRh &S ARL X ANE AR L (il &

RO, JU SR B 3 (/M 5 0 M. BORAIT AR BEAT AME 5 2 Hrides BRill

=, EPT R I ISR (R A1 Py ) B i S 7R 2 I HH B 3 4D 5 2R

45 6 WA SCERIRAEDS 24, YAl B 7 v i 45 RN B — B, At FEoR AR 2

RIRAE NG5 NEP RAE AR HEN E R, &M T2KB/EZAKB . Kk %
FELLANEBL, XTI LLAN R BOC A TERER AL, 38 H KA T, Blandotss. 4

A KID 53kl )58 1) KID 44 56165 NEP )°810~18 W/ Hz & %%,

e — Bk, FEAR ZARIE B AT T, RINAE RGUHDEARCR SEPME N 41%.,

T 05 HA AR AE 15 THz AR ECR (76%), T Bl D 4 EL B

5 SR S A MR A LR AR, YL T 45 fire,, AT 7 PSD V46 240

A BRSSO R SR HAG 2, 1, AREMAARABCR B R AL GRFFRT) 1) NEP 1%
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Ae, [HRZm B (RS ) NEP BILIFIEE.
w
AR 4 ARIE SRR Y 15 THz $5 350 & KID R4, VE4L 7

wn
nE

5 28 BB /ME T o BTid oA B, SRR i AR R o R s T A S AR 5 T e R

ARG, DB (B, FLAR PR MR BR A8 [ p b 300 5 SRR FAE IO 82, 2
K% KID %% NEP SRAE M m R0 PAEIRAR. SR F A0S i AR VR RRAE T 45
3 KID TR MFEHGEAT B 1 RO 2R . 7S PSD M2 NEP, HrPfE 300
Hz P ARRAL, AR 2 1) e /NMIFENEP 2 7.5 X 1078 W/VHz, #/MERK
NEPA7.1 x 10~18 W/\Hz, #EP,,, = 1.3 fWH, R0 #8156 71 /5 BRI A, )5

A T 1 Hz. 10 Hz A1 100 Hz S5 AR A SIS AL 1) NEP ERE, KB TLS M

P8 HLRE B NEP IRARE VE BE 1 < 8. A SONBARIR A K sy R B 24 KID s

# NEP RALRME T HARSH. Ja R H/ME S0 RGN E KID K6EA

N5 NEP, 5E & LEEGPN R vA (1 I BB A SR AR PR AR 1, DL i i 5 e

HA MR ARIRIA B o KID 65700 S 52 A0 NEP PREERAL.
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Abstract

For future millimeter/submillimeter and terahertz astronomy, kilo-pixel
imaging arrays of ultra-sensitive, background-limited detectors are
essential. Superconducting kinetic inductance detectors (KIDs) are a
leading candidate for this purpose, given their intrinsic frequency-domain
multiplexing and straightforward fabrication. Aluminum, which has a long
quasiparticle lifetime, is a crucial material for implementing the sensitive
element of a KID. A key figure of merit that quantifies detector sensitivity
is the noise equivalent power (NEP). This study compares two

characterization methods — small-signal analysis and a frequency-shift
response model—for optical responsivity and NEP of an aluminum-based

terahertz KID coupled to a cryogenic blackbody. The KID is a lumped-

element, high-Q microwave resonator consisting of a tantalum

18



interdigitated capacitor in parallel with an aluminum inductor, with the
latter acting as the 15 THz absorber. The small-signal analysis method,
which employs phase and amplitude as observables, demands high
precision in blackbody temperature control and involves long measurement
times. In contrast, the frequency shift response model method, utilizing
frequency and dissipation as observables, places less stringent demands on
thermometer resolution and enables faster measurements. Moreover, it fits
the fractional frequency shift response more accurately than linear models.
Consequently, it represents an efficient and rapid approach for
characterizing the optical responsivity and NEP of KIDs. With this method,
a minimum optical frequency NEP of 7.5x107'* W/+/Hz and a dissipation
NEP of 7.1x107'* W/+/Hz were achieved for the terahertz KID at 300 Hz,
referenced to the absorbed power. Furthermore, the frequency NEP
significantly exceeded the dissipation NEP at 1, 10, and 100 Hz, which is
attributable to two-level system noise. Our work offers valuable technical
guidance for the rapid NEP characterization of high-sensitivity terahertz

KIDs in low-temperature measurement applications.

Keywords: noise equivalent power (NEP), optical responsivity, characterization methods,

kinetic inductance detectors (KIDs)
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