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Fig. 1. AlIGaN/GaN HEMT Device with h-BN Buffer Layer: (a) Schematic diagram; (b)
Microscope image.
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Fig. 2. AlIGaN/GaN HEMT devices with and without BN buffer layers: (a) Transfer curves in

logarithmic coordinates; (b) transfer and transconductance curves in conventional coordinates.
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Fig. 3. Output characteristics comparison of AlGaN/GaN HEMT devices: (a) Without BN buffer
layer; (b) with BN buffer layer.
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Fig. 4. AlGaN/GaN HEMT devices with an h-BN buffer layer: (a) Pulsed output characteristics

measured with a pulse width of 10 ps duty cycle of 1%: (b) Pulsed transfer characteristics
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Fig. 6. Comparison of small-signal characteristics of AlGaN/GaN HEMT devices: (a)

Conventional device; (b) HEMT device with BN buffer layer.
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Research on the Mechanism of GaN HEMT Interface
Engineering in Enhancing High-Temperature and Dynamic
Bias Reliability ~

WAN Ziyan)# ZHANG Haoran"# LI Xiao? NING Jing) HAO Yue" ZHANG Jincheng

1) (The State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated
Technology, School of Microelectronics, Xidian University, Xi’an 710071, China)

Abstract
Traditional GaN materials inevitably exhibit lattice mismatch and
differing thermal expansion coefficients during epitaxial growth, which
often leads to a sharp increase in dislocation density and interface defects.
This results in severe current collapse, degraded high-frequency
performance, and reliability degradation in GaN HEMT devices,
representing one of the key bottlenecks facing GaN-based HEMT RF
devices. Van der Waals epitaxial bonding between BN and GaN
effectively suppresses dislocations and relieves material stress, playing a
crucial role in enhancing the high-frequency performance and reliability
of GaN HEMT devices. This paper fabricates AlGaN/GaN HEMT devices
grown on BN buffer layers using van der Waals epitaxy. Test results
indicate that compared to conventional devices without a BN buffer layer,
not only has the on-resistance been reduced by 40% and the peak
transconductance increased by 54%, but the maximum output current has

also been boosted by 67%. Under strong negative gate voltage stress
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conditions, its performance significantly outperforms conventional
devices, with a current collapse ratio of only 9.2%. During the pulse width
reduction from 200 ms to 100 ps, only a minimal drift of approximately
0.09 V occurs. Under high-temperature conditions (125°C), the current
collapse ratio is only 31%, with smaller reductions in transconductance
and negative drift of Vth. The overall degradation is significantly lower
than that of conventional AlIGaN/GaN HEMT devices based on epitaxial
systems, demonstrating excellent high-temperature dynamic stability.
Additionally, RF performance improved, with fr increasing from 48 GHz
to 90 GHz and f,.x rising from 114 GHz to 133 GHz. This work fully
demonstrates this interface optimization strategy simultaneously enhances
carrier transport, suppresses trap effects, and improves RF performance,
providing an effective pathway for realizing high-frequency, high-power,
and highly reliable GaN HEMTs.

Keywords: current collapse, high temperature, GaN HEMT, van der Waals epitaxy
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