Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Single photon transport properties in the system of coupled cavity array nonlocally coupled to a -type three-level atom

Hai Lian Zhang Sha Li Wei-Yin Tan Lei

Citation:

Single photon transport properties in the system of coupled cavity array nonlocally coupled to a -type three-level atom

Hai Lian, Zhang Sha, Li Wei-Yin, Tan Lei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we discuss the transport properties of a single photon, which is in a coupled cavity array system where the two nearest cavities nonlocally couple to a -type three-level atom, under the condition of ideal and dissipation, respectively. By employing the quasi-boson picture, the transmission amplitude of the single photon in an open system is investigated analytically. The system where the coupled cavity array nonlocally couples with the three-level atom demonstrates several advantages. Compared with other systems, this system has many parameters to manipulate the single photon transport properties. Moreover, the system of the coupled cavity array that nonlocally couples with the three-level atom may have a wider range of application because the single photon transmission spectrum in this system has three peaks. Furthermore, it has characteristics of its own. At the same value of Rabi frequency , changing the coupling strength between the atom and one cavity of the coupled cavity array shows that there exists an fixed point where the transmission rate is always 1, and the point is corresponding to the frequency of the photon c-. In the nonideal case, it is shown that the dissipations of the cavity and the atom affect distinctively the transmission of photons in the coupled cavity arrays. When considering only the dissipation of the atom, the atomic dissipation increases the dips of the single photon transport spectrum, while the peaks have no observable changes. When considering only the dissipation of the cavity, the peaks of the single photon transmission amplitude are diminished deeply, while the cavity dissipation does not have any effect on the dips. In addition, with both the cavity dissipation rate and the number of the cavity increasing, the photon transmission spectrum peaks decrease. A comparison of the dissipative cavity case with the dissipative atom case shows that the incomplete reflect near the peak is mostly caused by the cavity dissipation, and that the incomplete reflect near the dip is mostly caused by the three-level atom dissipation. Specifically, when considering both the atom and the cavity dissipation at the same time, the dips of the single photon transport spectrum are affected by both the atomic and the cavity dissipation. Instead, with the cavity dissipation rate increasing, the photon transmission spectrum dips are reduced. But for the peaks of the single photon transport spectrum, the dips are always determined by the cavity dissipation rate and the number of the cavity, while the atomic dissipation has no significant influence on them.
      Corresponding author: Tan Lei, tanlei@lzu.edu.cn
    • Funds: Project supported by the State Ethnic Scientific Research Projects,China (Grant No.14BFZ013) and the National Natural Science Foundation of China (Grant No.11647009).
    [1]

    Hartmann M J, Brando F G S L, Plenio M B 2008 Laser Photon. Rev. 2 527

    [2]

    Sun C P, Wei L F, Liu Y X, Nori F 2006 Phys. Rev. A 73 022318

    [3]

    Zhou L, Gong Z R, Liu Y X, Sun C P, Nori F 2008 Phys. Rev. Lett. 101 100501

    [4]

    Gong Z R, Ian H, Zhou L, Sun C P 2008 Phys. Rev. A 78 053806

    [5]

    Biella A, Mazza L, Carusotto I, Rossini D, Rosario F 2015 Phys. Rev. A 91 053815

    [6]

    Cheng M T, Song Y Y, Ma X S 2016 J. Mod. Opt. 63 881

    [7]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [8]

    Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J, Kimble H J 2006 Nature 443 671

    [9]

    Srinivasan K, Painter O 2007 Nature 450 862

    [10]

    Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062

    [11]

    Rosenblit M, Horak P, Helsby S, Folman R 2004 Phys. Rev. A 70 053808

    [12]

    Zang X F, Jiang C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 215501

    [13]

    Zhou T, Zang X F, Liu Y S, Zheng L, Gao T 2015 J. Mod. Opt. 62 32

    [14]

    Cheng M T, Song Y Y, Luo Y Q, Ma X S, Wang P Z 2011 J. Mod. Opt. 58 1233

    [15]

    Cheng M T, Zong W W, Ye G L, Ma X S, Zhang J Y, Wang B 2016 Commun. Theor. Phys. 65 767

    [16]

    Shi Y Q, Kong W L, Wu R C, Zhang W X, Tan L 2017 Acta Phys. Sin. 66 054204 (in Chinese) [石永强, 孔维龙, 吴仁存, 张文轩, 谭磊 2017 物理学报 66 054204]

    [17]

    Shen J T, Fan S 2009 Phys. Rev. A 79 023837

    [18]

    Shen J T, Fan S 2009 Phys. Rev. A 79 023838

    [19]

    Rephaeli E, Shen J T, Fan S 2010 Phys. Rev. A 82 033804

    [20]

    Zhou L, Yang S, Liu Y X, Sun C P, Nori F 2009 Phys. Rev. A 80 062109

    [21]

    Hai L, Tan L, Feng J S, Bao J, L C H, Wang B 2013 Eur. Phys. J. D 67 173

    [22]

    Cheng M T, Ma X S, Ting M T, Luo Y Q, Zhao G X 2012 Phys. Rev. A 85 053840

    [23]

    Cheng M T, Luo Y Q, Song Y Y, Zhao G X 2011 Commun. Theor. Phys. 55 501

    [24]

    Schmid S I, Evers J 2011 Phys. Rev. A 84 053822

    [25]

    Witthaut D, Srensen A S 2010 New. J. Phys. 12 043052

    [26]

    Zhou L, Chang Y, Dong H, Kuang L M, Sun C P 2012 Phys. Rev. A 85 013806

    [27]

    Lang J H 2010 Chin. Phys. Lett. 28 104210

    [28]

    del Valle E, Hartmann M J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224023

    [29]

    Creatore C, Fazio R, Keeling J, Treci H E 2014 Proc. R. Soc. A 470 20140328

    [30]

    Liu K, Tan L, L C H, Liu W M 2011 Phys. Rev. A 83 063840

    [31]

    Bao J, Tan L 2014 Acta Phys. Sin. 63 084201 (in Chinese) [鲍佳, 谭磊 2014 物理学报 63 084201]

    [32]

    Tan L, Hai L 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035504

    [33]

    Hai L, Tan L, Feng J S, Xu W B, Wang B 2014 Chin. Phys. B 23 024202

    [34]

    Notomi M, Kuramochi E, Tanabe T 2008 Nat. Photon. 2 741

  • [1]

    Hartmann M J, Brando F G S L, Plenio M B 2008 Laser Photon. Rev. 2 527

    [2]

    Sun C P, Wei L F, Liu Y X, Nori F 2006 Phys. Rev. A 73 022318

    [3]

    Zhou L, Gong Z R, Liu Y X, Sun C P, Nori F 2008 Phys. Rev. Lett. 101 100501

    [4]

    Gong Z R, Ian H, Zhou L, Sun C P 2008 Phys. Rev. A 78 053806

    [5]

    Biella A, Mazza L, Carusotto I, Rossini D, Rosario F 2015 Phys. Rev. A 91 053815

    [6]

    Cheng M T, Song Y Y, Ma X S 2016 J. Mod. Opt. 63 881

    [7]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [8]

    Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J, Kimble H J 2006 Nature 443 671

    [9]

    Srinivasan K, Painter O 2007 Nature 450 862

    [10]

    Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062

    [11]

    Rosenblit M, Horak P, Helsby S, Folman R 2004 Phys. Rev. A 70 053808

    [12]

    Zang X F, Jiang C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 215501

    [13]

    Zhou T, Zang X F, Liu Y S, Zheng L, Gao T 2015 J. Mod. Opt. 62 32

    [14]

    Cheng M T, Song Y Y, Luo Y Q, Ma X S, Wang P Z 2011 J. Mod. Opt. 58 1233

    [15]

    Cheng M T, Zong W W, Ye G L, Ma X S, Zhang J Y, Wang B 2016 Commun. Theor. Phys. 65 767

    [16]

    Shi Y Q, Kong W L, Wu R C, Zhang W X, Tan L 2017 Acta Phys. Sin. 66 054204 (in Chinese) [石永强, 孔维龙, 吴仁存, 张文轩, 谭磊 2017 物理学报 66 054204]

    [17]

    Shen J T, Fan S 2009 Phys. Rev. A 79 023837

    [18]

    Shen J T, Fan S 2009 Phys. Rev. A 79 023838

    [19]

    Rephaeli E, Shen J T, Fan S 2010 Phys. Rev. A 82 033804

    [20]

    Zhou L, Yang S, Liu Y X, Sun C P, Nori F 2009 Phys. Rev. A 80 062109

    [21]

    Hai L, Tan L, Feng J S, Bao J, L C H, Wang B 2013 Eur. Phys. J. D 67 173

    [22]

    Cheng M T, Ma X S, Ting M T, Luo Y Q, Zhao G X 2012 Phys. Rev. A 85 053840

    [23]

    Cheng M T, Luo Y Q, Song Y Y, Zhao G X 2011 Commun. Theor. Phys. 55 501

    [24]

    Schmid S I, Evers J 2011 Phys. Rev. A 84 053822

    [25]

    Witthaut D, Srensen A S 2010 New. J. Phys. 12 043052

    [26]

    Zhou L, Chang Y, Dong H, Kuang L M, Sun C P 2012 Phys. Rev. A 85 013806

    [27]

    Lang J H 2010 Chin. Phys. Lett. 28 104210

    [28]

    del Valle E, Hartmann M J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224023

    [29]

    Creatore C, Fazio R, Keeling J, Treci H E 2014 Proc. R. Soc. A 470 20140328

    [30]

    Liu K, Tan L, L C H, Liu W M 2011 Phys. Rev. A 83 063840

    [31]

    Bao J, Tan L 2014 Acta Phys. Sin. 63 084201 (in Chinese) [鲍佳, 谭磊 2014 物理学报 63 084201]

    [32]

    Tan L, Hai L 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035504

    [33]

    Hai L, Tan L, Feng J S, Xu W B, Wang B 2014 Chin. Phys. B 23 024202

    [34]

    Notomi M, Kuramochi E, Tanabe T 2008 Nat. Photon. 2 741

  • [1] Gu Yan, Lu Zhan-Peng. Localization transition in non-Hermitian coupled chain. Acta Physica Sinica, 2024, 73(19): 197101. doi: 10.7498/aps.73.20240976
    [2] Zhu Ming-Jie, Zhao Wei, Wang Zhi-Hai. Photonic shielding in giant resonator system. Acta Physica Sinica, 2023, 72(9): 094202. doi: 10.7498/aps.72.20230049
    [3] Shi Yong-Qiang, Kong Wei-Long, Wu Ren-Cun, Zhang Wen-Xuan, Tan Lei. Single photon transport by a quantized cavity field driven cascade-type three-level atom in a dissipative coupled cavity array. Acta Physica Sinica, 2017, 66(5): 054204. doi: 10.7498/aps.66.054204
    [4] Lu Dao-Ming. Dynamics of nonlocality in an equidistance cavity coupled by fibers. Acta Physica Sinica, 2016, 65(10): 100301. doi: 10.7498/aps.65.100301
    [5] Xiong Fang, Feng Xiao-Qiang, Tan Lei. Quantum phase transition in arrays of dissipative cavities with two-photon process. Acta Physica Sinica, 2016, 65(4): 044205. doi: 10.7498/aps.65.044205
    [6] Nong Chun-Xuan, Li Ming, Chen Cui-Ling. Squeezing properties of two-mode atom laser in a system of Ξ-type three-level atomic Bose-Einstein condensate interacting with single-mode light field. Acta Physica Sinica, 2014, 63(4): 043202. doi: 10.7498/aps.63.043202
    [7] Bao Jia, Tan Lei. The influences of detuning on the duperfluid-nsulator phase transition in coupled dissipative cavity arrays. Acta Physica Sinica, 2014, 63(8): 084201. doi: 10.7498/aps.63.084201
    [8] Lu Dao-Ming. The entanglement properties in the system of a two three-level atoms trapped in coupled cavities. Acta Physica Sinica, 2012, 61(3): 030301. doi: 10.7498/aps.61.030301
    [9] Lu Dao-Ming. The entanglement properties in the system composed of a -type atom and a V-type atom trapped in two distant cavities connected by an optical fiber. Acta Physica Sinica, 2011, 60(12): 120303. doi: 10.7498/aps.60.120303
    [10] Bai Jiang-Xiang, Mi Xian-Wu, Li De-Jun. Theoretical investigation of mode coupling to a microdisk system containing a three-level quantum-dot. Acta Physica Sinica, 2010, 59(9): 6205-6212. doi: 10.7498/aps.59.6205
    [11] Du Xiao-Yu, Zheng Wan-Hua, Ren Gang, Wang Ke, Xing Ming-Xin, Chen Liang-Hui. Slow wave effect of 2-D photonic crystal coupled cavity array. Acta Physica Sinica, 2008, 57(1): 571-575. doi: 10.7498/aps.57.571
    [12] Zhou Qing-Chun. Emission spectrum of a cascade three-level atom with orthogonal dipoles interacting with a single-mode field. Acta Physica Sinica, 2006, 55(9): 4618-4623. doi: 10.7498/aps.55.4618
    [13] Xie Min, Ling Lin, Yang Guo-Jian. Velocity-selective coherent population trapping of a nondegenerate Λ three-level atom. Acta Physica Sinica, 2005, 54(8): 3616-3621. doi: 10.7498/aps.54.3616
    [14] Liu Zheng-Dong, Wu Qiang. Electromagnetically induced transparency in a four-level atomic system driven by three coupled fields. Acta Physica Sinica, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [15] Gao Yun-Feng, Feng Jian, Wang Ji-Suo. Cavity field spectrum of a cascade three-level atom interacting with a single-mode field. Acta Physica Sinica, 2004, 53(8): 2563-2568. doi: 10.7498/aps.53.2563
    [16] Huang Chun-Jia, He Hui-Yong, Kong Fan-Zhi, Fang Jia-Yuan. Evolution of the entropy of light field interacting with the V-type three-level atom via intensity-dependent coupling. Acta Physica Sinica, 2004, 53(8): 2539-2543. doi: 10.7498/aps.53.2539
    [17] LIANG WEN-QING, CHU KAI-QIN, ZHANG ZHI-MING, XIE SHENG-WU. MICROMASER INJECTED WITH ULTRA-COLD V-TYPE THREE-LEVEL ATOMS:EFFECTS OF ATOMIC COHERENCE ON PHOTON STATISTICS. Acta Physica Sinica, 2001, 50(12): 2345-2355. doi: 10.7498/aps.50.2345
    [18] TAO XIANG-YANG, LIU JIN-MING, LIU SAN-QIU, FU CHUAN-HONG. QUANTUM STATISTIC PROPERTIES OF NON-RESONANCE INTERACTION BETWEEN A THREE-LEVEL ATOM AND TWO MODE CAVITIES WITH KERR MEDIUM. Acta Physica Sinica, 2000, 49(8): 1464-1470. doi: 10.7498/aps.49.1464
    [19] XIE SHUANG-YUAN, YANG YA-PING, WU XIANG. SPONTANEOUS EMISSION FROM A THREE-LEVEL ATOM EMBEDDED IN A THREE-DIMENSIONAL PHOTONIC CRYSTAL. Acta Physica Sinica, 2000, 49(8): 1478-1483. doi: 10.7498/aps.49.1478
    [20] LIU SAN-QIU, GUO QIN, TAO XIANG-YANG, FU CHUAN-HONG. QUANTUM DYNAMICS OF A CASCADE THREE-LEVEL ATOM INTERACTING WITH COHERENT STATE IN THE COUNTER ROTATING WAVE APPROXIMATION. Acta Physica Sinica, 1998, 47(9): 1481-1488. doi: 10.7498/aps.47.1481
Metrics
  • Abstract views:  5413
  • PDF Downloads:  157
  • Cited By: 0
Publishing process
  • Received Date:  21 February 2017
  • Accepted Date:  13 April 2017
  • Published Online:  05 August 2017

/

返回文章
返回