Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quadrature squeezing of the system consisting of nitrogen-vacancy centers in diamond coupled to cavity field and mechanical resonator

Liao Qing-Hong Ye Yang Li Hong-Zhen Zhou Nan-Run

Citation:

Quadrature squeezing of the system consisting of nitrogen-vacancy centers in diamond coupled to cavity field and mechanical resonator

Liao Qing-Hong, Ye Yang, Li Hong-Zhen, Zhou Nan-Run
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the great improvement of nanotechnology, it is now possible to fabricate mechanical resonator with dimension on a micro and even nanometer scale.Because of its high vibration frequency, quality factor, very small mass, and low intrinsic dissipation, nanomechanical resonator has important applications in the field of high-precision displacement detection, force detection, mass measurement, and accurate quantum computation.Mechanical resonator is also a promising candidate for observing quantum effects in macroscopic objects.By coupling nanomechanical resonator to other solid-state system such as optical cavity, microwave cavity, nitrogen-vacancy center (NV center) and superconducting qubits, researchers have successfully cooled the mechanical resonator to its quantum ground state, which paves the way for observing nonclassical states in resonator such as superposition state and Fock state.On the other hand, the nitrogenvacancy center in diamond has attracted more and more attention because of its advantages of long coherence time at room temperature, the ability to implement initialization and readout, and microwave control.Moreover, these NV centers can be used to detect weak magnetic field and electric field at room temperature.By using both laser field and microwave field, one can implement the manipulation, storage, and readout of the quantum information.In addition, because NV centers couple to both optical field and microwave field, they can also be used as a quantum interface between optical system and solid-state system.This provides a promising platform to study novel quantum phenomena based on NV centers separated by long distances.The nitrogen-vacancy center in diamond coupled to nanomechanical resonator can be used in precision measurement and quantum information processing, which has become a hot research topic.In this paper, we study the dynamics of quadrature squeezing of the phonon field in the system consisting of nitrogen-vacancy centers in diamond coupled to both cavity field and mechanical resonator.The effects of initial state of nitrogen-vacancy center and the coupling strength between nitrogen-vacancy center and mechanical resonator on the quadrature squeezing of the phonon field are analyzed.It is shown that the phonon field squeezed state with longtime and high-degree can be generated.The physical reason is that the mechanical resonator has the largest coherence.Moreover, the non-classical property of quadrature squeezing of mechanical resonator can be achieved by manipulating the initial state of nitrogen-vacancy center and magnetic field gradient.The proposal may provide a theoretical way to control and manipulate the quadrature squeezing of the phonon field.The results obtained here may have great significance and applications in the field of quantum information processing and precision measurement.
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 61368002), the Foundation for Distinguished Young Scientists of Jiangxi Province, China (Grant No. 20162BCB23009), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20161BAB202046), the Research Foundation of the Education Department of Jiangxi Province, China (Grant No. GJJ13051), the Open Project Program of Chinese Academy of Sciences Key Laboratory of Quantum Information, China (Grant No. KQI201704), and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, China (Grant No. KF201711).
    [1]

    Carr D W, Evoy S, Sekaric L, Craighead H G, Parpia J M 1999 Appl. Phys. Lett. 75 920

    [2]

    Blick R H, Roukes M L, Wegscheider W, Bichler M 1998 Phys. B:Condensed Matter 249 784

    [3]

    Caves C M, Thorne K S, Drever R W P, Sandberg V D, Zimmermann M 1980 Rev. Mod. Phys. 52 341

    [4]

    Sekaric L, Parpia J M, Craighead H G, Feygelson T, Houston B H, Butler J E 2002 Appl. Phys. Lett. 81 4455

    [5]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623

    [6]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1

    [7]

    Yin Z, Li T, Zhang X, Duan L M 2013 Phys. Rev. A 88 033614

    [8]

    Zhao N, Yin Z Q 2014 Phys. Rev. A 90 042118

    [9]

    Dolde F, Fedder H, Doherty M W, Nöbauer T, Rempp F, Balasubramanian G 2011 Nat. Phys. 7 459

    [10]

    Toyli D M, de las Casas C F, Christle D J, Dobrovitski V V, Awschalom D D 2013 Proc. Natl. Acad. Sci. USA 110 8417

    [11]

    Kolkowitz S, Jayich A C, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G, Lukin M D 2012 Science 335 1603

    [12]

    Ovartchaiyapong P, Lee K W, Myers B A, Jayich A C 2011 Nat. Commun. 5 4429

    [13]

    Li P B, Xiang Z L, Rabl P, Nori F 2016 Phys. Rev. Lett. 117 015502

    [14]

    Muschik C A, Moulieras S, Bachtold A, Koppens F H, Lewenstein M, Chang D E 2014 Phys. Rev. Lett. 112 223601

    [15]

    Liu B Y, Cui W, Dai H Y, Chen X, Zhang M 2017 Chin. Phys. B 26 090303

    [16]

    Liu B Y, Dai H Y, Chen X, Zhang M 2015 Eur. Phys. J. D 69 104

    [17]

    Rabl P, Cappellaro P, Dutt M V G, Jiang L, Maze J R, Lukin M D 2009 Phys. Rev. B 79 041302

    [18]

    Liu Y X, Sun C P, Nori F 2006 Phys. Rev. A 74 052321

    [19]

    Walls D F, Milburn G J, Garrison J C 1994 Quantum Optics (Berlin:Springer-Verlag) pp297-303

    [20]

    Yu C S, Song H S 2009 Phys. Rev. A 80 022324

    [21]

    Horowitz V R, Alemán B J, Christle D J, Cleland A N, Awschalom D D 2012 Proc. Natl. Acad. Sci. USA 109 13493

    [22]

    Geiselmann M, Juan M L, Renger J, Say J M, Brown L J, de Abajo F J, Koppens F, Quidant R 2013 Nat. Nanotechnol. 8 175

    [23]

    Neukirch L P, Gieseler J, Quidant R, Novotny L, Nick V A 2013 Opt. Lett. 38 2976

    [24]

    Gieseler J, Deutsch B M, Quidant R, Novotny L 2012 Phys. Rev. Lett. 109 103603

    [25]

    Mccutcheon M W, Loncar M 2008 Opt. Express 16 19136

    [26]

    Englund D, Shields B, Rivoire K, Hatami F, Vučković J, Park H, Lukin M D 2010 Nano Lett. 10 3922

    [27]

    Restrepo J, Favero I, Ciuti C 2017 Phys. Rev. A 95 023832

    [28]

    Mamin H J, Poggio M, Degen C L, Rugar D 2007 Nat. Nanotechnol. 2 301

  • [1]

    Carr D W, Evoy S, Sekaric L, Craighead H G, Parpia J M 1999 Appl. Phys. Lett. 75 920

    [2]

    Blick R H, Roukes M L, Wegscheider W, Bichler M 1998 Phys. B:Condensed Matter 249 784

    [3]

    Caves C M, Thorne K S, Drever R W P, Sandberg V D, Zimmermann M 1980 Rev. Mod. Phys. 52 341

    [4]

    Sekaric L, Parpia J M, Craighead H G, Feygelson T, Houston B H, Butler J E 2002 Appl. Phys. Lett. 81 4455

    [5]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623

    [6]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1

    [7]

    Yin Z, Li T, Zhang X, Duan L M 2013 Phys. Rev. A 88 033614

    [8]

    Zhao N, Yin Z Q 2014 Phys. Rev. A 90 042118

    [9]

    Dolde F, Fedder H, Doherty M W, Nöbauer T, Rempp F, Balasubramanian G 2011 Nat. Phys. 7 459

    [10]

    Toyli D M, de las Casas C F, Christle D J, Dobrovitski V V, Awschalom D D 2013 Proc. Natl. Acad. Sci. USA 110 8417

    [11]

    Kolkowitz S, Jayich A C, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G, Lukin M D 2012 Science 335 1603

    [12]

    Ovartchaiyapong P, Lee K W, Myers B A, Jayich A C 2011 Nat. Commun. 5 4429

    [13]

    Li P B, Xiang Z L, Rabl P, Nori F 2016 Phys. Rev. Lett. 117 015502

    [14]

    Muschik C A, Moulieras S, Bachtold A, Koppens F H, Lewenstein M, Chang D E 2014 Phys. Rev. Lett. 112 223601

    [15]

    Liu B Y, Cui W, Dai H Y, Chen X, Zhang M 2017 Chin. Phys. B 26 090303

    [16]

    Liu B Y, Dai H Y, Chen X, Zhang M 2015 Eur. Phys. J. D 69 104

    [17]

    Rabl P, Cappellaro P, Dutt M V G, Jiang L, Maze J R, Lukin M D 2009 Phys. Rev. B 79 041302

    [18]

    Liu Y X, Sun C P, Nori F 2006 Phys. Rev. A 74 052321

    [19]

    Walls D F, Milburn G J, Garrison J C 1994 Quantum Optics (Berlin:Springer-Verlag) pp297-303

    [20]

    Yu C S, Song H S 2009 Phys. Rev. A 80 022324

    [21]

    Horowitz V R, Alemán B J, Christle D J, Cleland A N, Awschalom D D 2012 Proc. Natl. Acad. Sci. USA 109 13493

    [22]

    Geiselmann M, Juan M L, Renger J, Say J M, Brown L J, de Abajo F J, Koppens F, Quidant R 2013 Nat. Nanotechnol. 8 175

    [23]

    Neukirch L P, Gieseler J, Quidant R, Novotny L, Nick V A 2013 Opt. Lett. 38 2976

    [24]

    Gieseler J, Deutsch B M, Quidant R, Novotny L 2012 Phys. Rev. Lett. 109 103603

    [25]

    Mccutcheon M W, Loncar M 2008 Opt. Express 16 19136

    [26]

    Englund D, Shields B, Rivoire K, Hatami F, Vučković J, Park H, Lukin M D 2010 Nano Lett. 10 3922

    [27]

    Restrepo J, Favero I, Ciuti C 2017 Phys. Rev. A 95 023832

    [28]

    Mamin H J, Poggio M, Degen C L, Rugar D 2007 Nat. Nanotechnol. 2 301

  • [1] Liu Xin, Cai Chen, Dong Zhi-Fei, Deng Xin, Hu Xin-Yu, Qi Zhi-Mei. Fiber-optic microphone based on bionic silicon micro-electro-mechanical system diaphragm. Acta Physica Sinica, 2022, 71(9): 094301. doi: 10.7498/aps.71.20212229
    [2] Shen Xiang, Zhao Li-Ye, Huang Pu, Kong Xi, Ji Lu-Min. Atomic spin and phonon coupling mechanism of nitrogen-vacancy center. Acta Physica Sinica, 2021, 70(6): 068501. doi: 10.7498/aps.70.20201848
    [3] Temperature sensing with NV center in diamond. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211822
    [4] Li Zhong-Hao, Wang Tian-Yu, Guo Qi, Guo Hao, Wen Huan-Fei, Tang Jun, Liu Jun. Enhancement of magnetic detection by ensemble NV color center based on magnetic flux concentration effect. Acta Physica Sinica, 2021, 70(14): 147601. doi: 10.7498/aps.70.20210129
    [5] Liu Ni, Wang Jian-Fen, Liang Jiu-Qing. Ground-state cooling of mechanical resonator in double optical cavity. Acta Physica Sinica, 2020, 69(6): 064202. doi: 10.7498/aps.69.20191541
    [6] Yang Jian-Yong, Chen Hua-Jun. All-optical mass sensing based on ultra-strong coupling quantum dot-nanomechanical resonator system. Acta Physica Sinica, 2019, 68(24): 246302. doi: 10.7498/aps.68.20190607
    [7] Wang Cheng-Jie, Shi Fa-Zhan, Wang Peng-Fei, Duan Chang-Kui, Du Jiang-Feng. Nanoscale magnetic field sensing and imaging based on nitrogen-vacancy center in diamond. Acta Physica Sinica, 2018, 67(13): 130701. doi: 10.7498/aps.67.20180243
    [8] Si Jun-Feng, Huang Xiao-Lin, Zhou Ling-Ling, Liu Hong-Xing. Conditional fluctuation characteristics of heart rate variability. Acta Physica Sinica, 2014, 63(4): 040504. doi: 10.7498/aps.63.040504
    [9] Wu Yong-Feng, Zhang Shi-Ping, Sun Jin-Wei, Peter Rolfe. Abrupt change of synchronization of ring coupled Duffing oscillator. Acta Physica Sinica, 2011, 60(2): 020511. doi: 10.7498/aps.60.020511
    [10] Chen De-Yi, Wang Zhong-Long. Diffusion in a linear oscillator driven by colored noises with white cross-correlation. Acta Physica Sinica, 2010, 59(1): 111-115. doi: 10.7498/aps.59.111
    [11] Jin Yan-Fei, Hu Hai-Yan. Stochastic resonance of a damped linear oscillator. Acta Physica Sinica, 2009, 58(5): 2895-2901. doi: 10.7498/aps.58.2895
    [12] Liu Xiao-Juan, Zhou Bing-Ju, Fang Mao-Fa, Zhou Qing-Ping. Information entropy squeezing of the atom of an arbitrary initial state via the two-photon process. Acta Physica Sinica, 2006, 55(2): 704-711. doi: 10.7498/aps.55.704
    [13] Mo Jia-Qi, Lin Yi-Hua, Lin Wan-Tao. The perturbative solution for the tropic sea-air coupled oscillators. Acta Physica Sinica, 2005, 54(9): 3971-3974. doi: 10.7498/aps.54.3971
    [14] REN TING-QI, WANG QI-XIN, ZHANG QING-GANG, ZHANG YI-CI. THEORETICAL CALCULATION OF VIBRATIONAL AND ROTATIONAL TRANSITION PROBABILITIES FOR THE ATOM-OSCILLATOR SCATTERING. Acta Physica Sinica, 1993, 42(10): 1580-1586. doi: 10.7498/aps.42.1580
    [15] YAN HONG, CHANG ZHE, GUO HAN-YING. q-ROTATING OSCILLATOR MODEL (I)——q-Oscillator and Vibrational Spectra of Diatomic Molecules. Acta Physica Sinica, 1991, 40(9): 1377-1387. doi: 10.7498/aps.40.1377
    [16] YU XI-LING, JIN HUI-QIANG, YAN GUANG-HUI, WANG GUANG-RUI, CHEN SHI-GANG. FORCED BRUSSELATOR AND CIRCULAR MAPPING. Acta Physica Sinica, 1990, 39(3): 351-358. doi: 10.7498/aps.39.351
    [17] TIAN BO-GANG, LI JIA-MING. GENERALIZED OSCILLATOR STRENGTH DENSITY. Acta Physica Sinica, 1984, 33(10): 1401-1407. doi: 10.7498/aps.33.1401
    [18] WANG GUANG-RUI, CHEN SHI-GANG, HAO BAI-LIN. INTERMITTENT CHAOS IN THE FORCED BRUSSELATOR. Acta Physica Sinica, 1983, 32(9): 1139-1148. doi: 10.7498/aps.32.1139
    [19] BEIJING ANTENNA GROUP. MAGNETIC COATED SMALL DIPOLE ANTENNA. Acta Physica Sinica, 1978, 27(6): 615-630. doi: 10.7498/aps.27.615
    [20] ANTENNA GROUP. SOLUTION TO ANTENNA RADIATION FIELD AS AN INITIAL VALUE PROBLEM. Acta Physica Sinica, 1977, 26(4): 341-352. doi: 10.7498/aps.26.341
Metrics
  • Abstract views:  6460
  • PDF Downloads:  216
  • Cited By: 0
Publishing process
  • Received Date:  04 October 2017
  • Accepted Date:  10 November 2017
  • Published Online:  20 February 2019

/

返回文章
返回