Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A modified model of magneto-mechanical effect on magnetization in ferromagnetic materials

Luo Xu Zhu Hai-Yan Ding Ya-Ping

Citation:

A modified model of magneto-mechanical effect on magnetization in ferromagnetic materials

Luo Xu, Zhu Hai-Yan, Ding Ya-Ping
PDF
HTML
Get Citation
  • The prevailing Jiles-Atherton (J-A) model and Zheng Xiao-Jing-Liu Xing-En (Z-L) model are extensively used in modeling the magneto-mechanical effect on magnetization in ferromagnetic materials. In the J-A model, a fitting formula of magnetostrictive strain interms of stress and magnetization is adopted to model the stress effect on magnetostriction. However, the fitting formula is not in good accordance with the experimental results obtained by Kuruzar and Culllity. In order to solve this problem, a transcendental function tanh(x) is appropriately selected to describe the nonlinear magnetostrictive strain in the Z-L model, and it is found that the general formula of magnetostrictive strain is more effective to describe the nonlinear relation of magnetostrictive strain with stress and magnetization. Then, the modified law proposed by Jiles and Li is adopted to modify the Z-L model by Shi Pengpeng to describe the hysteretic behavior; nevertheless, the effect of Weiss molecular field, pinning energy and plastic deformation on magnetization are not taken into account, and the modified Z-L model can only describe the elastic stress effect on magnetization. In order to solve these problems above, a modified magneto-mechanical model is established by combining the magnetostrictive constitutive relationships of Z-L model with the modified energy conservation equation of J-A model, as well as taking the effect of elastic stress and plastic strain on the model parameters into account simultaneously. It is found that the predictions of proposed model here are in better accordance with the initial magnetization curves given by Jiles and Atherton and the hysteresis loops obtained by Makar and Tanner under different stresses and plastic deformation than those calculated by the J-A model and Z-L model. The correlation coefficients between experimental data and theoretical results calculated by the modified model are all over 0.98, which indicates that the modified model here is more effective than the existing model. A detailed study also performed to reveal the effects of the elastic tensile and compressive stress and plastic tensile and compressive strain on hysteresis loops, coercivity and remanence. The proposed model reveals that the area of hysteresis loop and coercivity increase nonlinearly with the stress and plastic deformation increasing, while the remanence decreases significantly; the effects of compressive stress and compressive plastic deformation on magnetization characteristic parameters above are more significant than those of tensile stress and tensile plastic deformation, which is consistent with the experimental trend. The proposed model can be used to quantitatively analyze the magneto-mechanical effect on the magnetization of ferromagnetism.
      Corresponding author: Luo Xu, 402585133@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51874253) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51604232)
    [1]

    Aydin U, Rasilo P, Martin F, Belahcen A, Daniel L, Havisto A, Arkkio A 2019 J. Magn. Magn. Mater. 469 19Google Scholar

    [2]

    Shi P, Jin K, Zheng X J 2017 Int. J. Mech. Sci. 124−125 229

    [3]

    Wang Z D, Deng B, Yao K 2011 J. Appl. Phys. 109 083928Google Scholar

    [4]

    Roskosz M, Gawrilenko P 2008 NDT & E Int. 41 570

    [5]

    Sablik M J, Landgraf F J G, Magnabosco R, Fukuhara M, de Campos M F, Machado R, Missell F P 2006 J. Magn. Magn. Mater. 304 155Google Scholar

    [6]

    Sablik M J, Kwun H, Burkhardt G L, Jiles D C 1987 J. Appl. Phys. 61 3799Google Scholar

    [7]

    Sablik M J, Rubin S W, Riley L A, Jiles D C, Kaminski D A, Biner S B 1993 J. Appl. Phys. 74 480Google Scholar

    [8]

    Jiles D C 1995 J. Phys. D: Appl. Phys. 28 1537Google Scholar

    [9]

    Craik D J, Wood M J 1970 J. Phys. D: Appl. Phys. 3 1009Google Scholar

    [10]

    Jiles D C 1988 J. Phys. D: Appl. Phys 21 1196Google Scholar

    [11]

    任文坚, 孙金立, 陈曦, 王振, 任吉林 2013 机械工程学报 49 8Google Scholar

    Ren W J, Shu J L, Chen X, Wang Z, Ren J L 2013 J. Mech. Eng. 49 8Google Scholar

    [12]

    任吉林, 陈晨, 刘昌奎, 陈曦, 舒铭航 2008 航空材料学报 28 41Google Scholar

    Ren J L, Chen C, Liu C K, Chen X, Shu M H 2008 J. Aeronaut. Mater. 28 41Google Scholar

    [13]

    Makar J M, Tanner B K 1998 J. Magn. Magn. Mater. 184 193Google Scholar

    [14]

    Makar J M, Tanner B K 2000 J. Magn. Magn. Mater. 222 291Google Scholar

    [15]

    Jiles D C, Atherton D L 1984 J. Appl. Phys. 55 2115Google Scholar

    [16]

    Jiles D C, Atherton D L 1984 J. Phys. D: Appl. Phys. 17 2491

    [17]

    Sablik M J, Burkhardt G L, Kwun H, Jiles D C 1988 J. Appl. Phys. 63 3930Google Scholar

    [18]

    Sablik M J, Jiles D C 1993 IEEE Trans. Magn. 29 2113Google Scholar

    [19]

    Nouicer A, Nouicer E, Feliachi M 2015 J. Magn. Magn. Mater. 373 240Google Scholar

    [20]

    Nouicer A, Nouicer E, Mahtali M, Feliachi M 2013 J. Supercond. Nov. Magn. 26 1489Google Scholar

    [21]

    Abdelmadjid N, Elamine N, Mouloud F 2013 Int. J. Appl. Eletrom. 42 343Google Scholar

    [22]

    Li J W, Xu M Q 2011 J. Appl. Phys. 110 63918Google Scholar

    [23]

    Sablik M J 1997 IEEE Trans. Magn. 33 3958Google Scholar

    [24]

    Li L, Jiles D C 2003 IEEE Trans. Magn. 39 3037Google Scholar

    [25]

    Sablik M J, Chen Y, Jiles D C 2000 AIP Conf. Proc. 509 1565

    [26]

    Sablik M J, Stegemann D, Krys A 2001 J. Appl. Phys. 89 7254Google Scholar

    [27]

    Sablik M J 2001 J. Appl. Phys. 89 5610Google Scholar

    [28]

    Lo C C H, Kinser E, Jiles D C 2003 J. Appl. Phys. 93 6626Google Scholar

    [29]

    Lo C C H, Lee S J, Li L, Kerdus L C, Jiles D C 2002 IEEE Trans. Magn. 38 2418Google Scholar

    [30]

    Sablik M J, Yonamine T, Landgraf F J G 2004 IEEE Trans. Magn. 40 3219Google Scholar

    [31]

    Li J W, Xu M Q, Leng J C, Xu M X 2012 J. Appl. Phys. 111 063909Google Scholar

    [32]

    Liu Q Y, Luo X, Zhu H Y, Liu J X, Han Y W 2017 Chin. Phys. B 26 077502Google Scholar

    [33]

    刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋 2017 物理学报 66 107501Google Scholar

    Liu Q Y, Luo X, Zhu H Y, Han Y W, Liu J X 2017 Acta Phys. Sin. 66 107501Google Scholar

    [34]

    Zhou Y H, Zhou H M, Zheng X J, Qiang Y, Jing W 2009 J. Magn. Magn. Mater. 321 281Google Scholar

    [35]

    Zhou Y H, Zhou H M, Zheng X J 2008 J. Appl. Phys. 104 23907Google Scholar

    [36]

    Shi P P, Jin K, Zheng X J 2016 J. Appl. Phys. 119 145103Google Scholar

    [37]

    Shi P P, Zhang P C, Jin K, Chen Z M, Zheng X J 2018 J. Appl. Phys. 123 145102Google Scholar

    [38]

    Kurzar M E, Cullity B D 1971 Intern. J. Magnetism 1 323

    [39]

    Yamasaki T, Yamamoto S, Hirao M 1996 NDT & E Int. 29 263Google Scholar

    [40]

    Sablik M J, Geerts W J, Smith K, Gregory A, Moore C, Palmer D, Bandyopadhyay A, Landgraf F J G, Campos M F 2010 IEEE Trans. Magn. 46 491Google Scholar

    [41]

    Schneider C S, Cannell P Y, Watts K T 1992 IEEE Trans. Magn. 28 2626Google Scholar

  • 图 1  单次磁化条件下不同模型计算得到的${B_{\rm{e}}}$-$H$曲线对比 (a)修正模型计算结果; (b) J-A模型计算结果; (c) Z-L模型计算结果; (d)不同模型计算结果与试验结果相关系数对比

    Figure 1.  Comparison of initial${B_{\rm{e}}}$-$H$curves calculated by different models: (a) Our theoretical model; (b) J-A model; (c) Z-L model; (d) correlation coefficients of different models

    图 2  不同应力条件下修正模型和J-A模型磁滞回线计算结果的对比 (a)含碳量为0.003%时修正模型计算结果; (b)含碳量为0.003%时J-A模型计算结果; (c)含碳量为0.15%时修正模型计算结果; (d)含碳量为0.15%时J-A模型计算结果

    Figure 2.  Hysteresis loops predicated by modified model and J-A model under different loading stresses: (a) Our modified model for 0.003 wt% C sample; (b) J-A model for 0.003 wt% C sample; (c) our modified model for 0.15 wt% C sample; (d) J-A model for 0.15 wt% C sample

    图 3  不同残余塑性变形条件下修正模型和J-A模型磁滞回线计算结果的对比 (a)含碳量0.003%时修正模型计算结果; (b)含碳量0.003%时J-A模型计算结果; (c)含碳量0.15%时修正模型计算结果; (d)含碳量0.15%时J-A模型计算结果

    Figure 3.  Hysteresis loops predicated by modified model and J-A model under different residual plastic deformation: (a) Our modified model for 0.003 wt% C sample; (b) J-A model for 0.003 wt% C sample; (c) our modified model for 0.15 wt% C sample; (d) J-A model for 0.15 wt% C sample

    图 4  弹性应力对磁滞回线、矫顽力及剩余磁感应强度的影响 (a)弹性拉应力对磁滞回线的影响; (b)弹性压应力对磁滞回线的影响; (c)弹性拉、压应力对矫顽力的影响; (d)弹性拉、压应力对剩余磁感应强度的影响

    Figure 4.  Effects of elastic stress on hysteresis loops, coercivity and remanence: (a) Effect of elastic tensile stress on hysteresis loop; (b) effect of elastic compressive stress on hysteresis loop; (c) effect of elastic tensile and compressive stress on coercivity; (d) effect of elastic tensile and compressive stress on remanence

    图 5  塑性应变对磁滞回线、矫顽力及剩余磁化强度的影响 (a)拉伸塑性应变对磁滞回线的影响; (b)压缩塑性变形对磁滞回线的影响; (c)塑性变形对矫顽力的影响; (d)塑性变形对剩余磁感应强度的影响

    Figure 5.  Effects of plastic deformation on hysteresis loops, coercivity and remanence: (a) Effect of plastic tensile deformation on hysteresis loop; (b) effect of plastic compressive deformation on hysteresis loop; (c) effect of plastic tensile and compressive deformation on coercivity; (d) effect of plastic tensile and compressive deformation on remanence

    表 1  不同模型的相关系数${R^2}$比较

    Table 1.  Correlation coefficients ${R^2}$ of initial magnetization curve predicated by different models.

    模型类型应力值/MPa
    –200–1000100200
    修正模型${R^2}$0.99040.99470.99730.98590.9724
    Z-L模型${R^2}$0.94210.92900.93330.93000.8956
    J-A模型${R^2}$0.62890.0394–0.02890.26880.6440
    DownLoad: CSV

    表 2  加载条件下不同模型计算得到的磁滞回线与试验曲线相关系数${R^2}$比较

    Table 2.  Correlation coefficients ${R^2}$ of hysteresis loops predicated by different models under loading condition.

    模型类型试件含碳量0.003 wt%试件含碳量0.15 wt%
    0 MPa33 MPa160 MPa0 MPa36 MPa182 MPa
    修正模型${R^2}$0.98450.98940.98980.98400.98080.9937
    J-A模型${R^2}$0.91330.91880.89840.94850.94960.9153
    DownLoad: CSV

    表 3  卸载条件下不同模型计算得到的磁滞回线与试验曲线相关系数${R^2}$比较

    Table 3.  Correlation coefficients ${R^2}$ of hysteresis loops predicated by different models under different residual plastic deformation.

    模型类型试件含碳量0.003 wt%试件含碳量0.153 wt%
    0 MPa160 MPa0 MPa182 MPa
    修正模型${R^2}$0.98450.99430.98400.9858
    J-A模型${R^2}$0.91330.98260.94850.9765
    DownLoad: CSV
  • [1]

    Aydin U, Rasilo P, Martin F, Belahcen A, Daniel L, Havisto A, Arkkio A 2019 J. Magn. Magn. Mater. 469 19Google Scholar

    [2]

    Shi P, Jin K, Zheng X J 2017 Int. J. Mech. Sci. 124−125 229

    [3]

    Wang Z D, Deng B, Yao K 2011 J. Appl. Phys. 109 083928Google Scholar

    [4]

    Roskosz M, Gawrilenko P 2008 NDT & E Int. 41 570

    [5]

    Sablik M J, Landgraf F J G, Magnabosco R, Fukuhara M, de Campos M F, Machado R, Missell F P 2006 J. Magn. Magn. Mater. 304 155Google Scholar

    [6]

    Sablik M J, Kwun H, Burkhardt G L, Jiles D C 1987 J. Appl. Phys. 61 3799Google Scholar

    [7]

    Sablik M J, Rubin S W, Riley L A, Jiles D C, Kaminski D A, Biner S B 1993 J. Appl. Phys. 74 480Google Scholar

    [8]

    Jiles D C 1995 J. Phys. D: Appl. Phys. 28 1537Google Scholar

    [9]

    Craik D J, Wood M J 1970 J. Phys. D: Appl. Phys. 3 1009Google Scholar

    [10]

    Jiles D C 1988 J. Phys. D: Appl. Phys 21 1196Google Scholar

    [11]

    任文坚, 孙金立, 陈曦, 王振, 任吉林 2013 机械工程学报 49 8Google Scholar

    Ren W J, Shu J L, Chen X, Wang Z, Ren J L 2013 J. Mech. Eng. 49 8Google Scholar

    [12]

    任吉林, 陈晨, 刘昌奎, 陈曦, 舒铭航 2008 航空材料学报 28 41Google Scholar

    Ren J L, Chen C, Liu C K, Chen X, Shu M H 2008 J. Aeronaut. Mater. 28 41Google Scholar

    [13]

    Makar J M, Tanner B K 1998 J. Magn. Magn. Mater. 184 193Google Scholar

    [14]

    Makar J M, Tanner B K 2000 J. Magn. Magn. Mater. 222 291Google Scholar

    [15]

    Jiles D C, Atherton D L 1984 J. Appl. Phys. 55 2115Google Scholar

    [16]

    Jiles D C, Atherton D L 1984 J. Phys. D: Appl. Phys. 17 2491

    [17]

    Sablik M J, Burkhardt G L, Kwun H, Jiles D C 1988 J. Appl. Phys. 63 3930Google Scholar

    [18]

    Sablik M J, Jiles D C 1993 IEEE Trans. Magn. 29 2113Google Scholar

    [19]

    Nouicer A, Nouicer E, Feliachi M 2015 J. Magn. Magn. Mater. 373 240Google Scholar

    [20]

    Nouicer A, Nouicer E, Mahtali M, Feliachi M 2013 J. Supercond. Nov. Magn. 26 1489Google Scholar

    [21]

    Abdelmadjid N, Elamine N, Mouloud F 2013 Int. J. Appl. Eletrom. 42 343Google Scholar

    [22]

    Li J W, Xu M Q 2011 J. Appl. Phys. 110 63918Google Scholar

    [23]

    Sablik M J 1997 IEEE Trans. Magn. 33 3958Google Scholar

    [24]

    Li L, Jiles D C 2003 IEEE Trans. Magn. 39 3037Google Scholar

    [25]

    Sablik M J, Chen Y, Jiles D C 2000 AIP Conf. Proc. 509 1565

    [26]

    Sablik M J, Stegemann D, Krys A 2001 J. Appl. Phys. 89 7254Google Scholar

    [27]

    Sablik M J 2001 J. Appl. Phys. 89 5610Google Scholar

    [28]

    Lo C C H, Kinser E, Jiles D C 2003 J. Appl. Phys. 93 6626Google Scholar

    [29]

    Lo C C H, Lee S J, Li L, Kerdus L C, Jiles D C 2002 IEEE Trans. Magn. 38 2418Google Scholar

    [30]

    Sablik M J, Yonamine T, Landgraf F J G 2004 IEEE Trans. Magn. 40 3219Google Scholar

    [31]

    Li J W, Xu M Q, Leng J C, Xu M X 2012 J. Appl. Phys. 111 063909Google Scholar

    [32]

    Liu Q Y, Luo X, Zhu H Y, Liu J X, Han Y W 2017 Chin. Phys. B 26 077502Google Scholar

    [33]

    刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋 2017 物理学报 66 107501Google Scholar

    Liu Q Y, Luo X, Zhu H Y, Han Y W, Liu J X 2017 Acta Phys. Sin. 66 107501Google Scholar

    [34]

    Zhou Y H, Zhou H M, Zheng X J, Qiang Y, Jing W 2009 J. Magn. Magn. Mater. 321 281Google Scholar

    [35]

    Zhou Y H, Zhou H M, Zheng X J 2008 J. Appl. Phys. 104 23907Google Scholar

    [36]

    Shi P P, Jin K, Zheng X J 2016 J. Appl. Phys. 119 145103Google Scholar

    [37]

    Shi P P, Zhang P C, Jin K, Chen Z M, Zheng X J 2018 J. Appl. Phys. 123 145102Google Scholar

    [38]

    Kurzar M E, Cullity B D 1971 Intern. J. Magnetism 1 323

    [39]

    Yamasaki T, Yamamoto S, Hirao M 1996 NDT & E Int. 29 263Google Scholar

    [40]

    Sablik M J, Geerts W J, Smith K, Gregory A, Moore C, Palmer D, Bandyopadhyay A, Landgraf F J G, Campos M F 2010 IEEE Trans. Magn. 46 491Google Scholar

    [41]

    Schneider C S, Cannell P Y, Watts K T 1992 IEEE Trans. Magn. 28 2626Google Scholar

  • [1] Chu Xin-Bo, Jin Zuan-Ming, Wu Xu, Li Jing-Nan, Shen Yang, Wang Ruo-Yu, Ji Bing-Yu, Li Zhang-Shun, Peng Yan. Pulsed far-infrared radiation of ferromagnetic heterojunction and its photothermal regulation. Acta Physica Sinica, 2023, 72(15): 157801. doi: 10.7498/aps.72.20230543
    [2] Zhang Shuo, Long Lian-Chun, Liu Jing-Yi, Yang Yang. Effect of defects on magnetostriction and magnetic moment evolution of iron thin films. Acta Physica Sinica, 2022, 71(1): 017502. doi: 10.7498/aps.71.20211177
    [3] Luo Xu, Wang Li-Hong, Lü Liang, Cao Shu-Feng, Dong Xue-Cheng, Zhao Jian-Guo. Forward model of metal magnetic memory testing based on equivalent surface magnetic charge theory. Acta Physica Sinica, 2022, 71(15): 154101. doi: 10.7498/aps.71.20220176
    [4] Molecular dynamics study on the effect of defects on magnetostriction of iron thin films. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211177
    [5] Shi Peng-Peng, Hao Shuai. Analytical solution of magneto-mechanical magnetic dipole model for metal magnetic memory method. Acta Physica Sinica, 2021, 70(3): 034101. doi: 10.7498/aps.70.20200937
    [6] Li De-Ming, Fang Song-Ke, Tong Jin-Shan, Su Jian, Zhang Na, Song Gui-Lin. Effects of Ca2+ doping on dielectric, ferromagnetic properties and magnetic phase transition of SmFeO3 ceramics. Acta Physica Sinica, 2018, 67(6): 067501. doi: 10.7498/aps.67.20172433
    [7] Liu Qing-You, Luo Xu, Zhu Hai-Yan, Han Yi-Wei, Liu Jian-Xun. Modeling plastic deformation effect on the hysteresis loops of ferromagnetic materials based on modified Jiles-Atherton model. Acta Physica Sinica, 2017, 66(10): 107501. doi: 10.7498/aps.66.107501
    [8] Song Gui-Lin, Su Jian, Zhang Na, Chang Fang-Gao. Dielectric properties and high temperature magnetic behavior on multiferroics Bi1-xCaxFeO3 ceramics. Acta Physica Sinica, 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [9] Li Zheng-Hua, Li Xiang. Micromagnetic modeling of L10-ordered FePtmagnetic thin films. Acta Physica Sinica, 2014, 63(16): 167504. doi: 10.7498/aps.63.167504
    [10] Song Gui-Lin, Luo Yan-Ping, Su Jian, Zhou Xiao-Hui, Chang Fang-Gao. Effects of Dy and Co co-substitution on the magnetic properties and TC of BiFeO3 ceramics. Acta Physica Sinica, 2013, 62(9): 097502. doi: 10.7498/aps.62.097502
    [11] Zhu Jie, Su Yuan-Chang, Pan Jing, Feng Guo-Lin. Gaussian type inhomogeneous stress and strain effects on the magnetic properties in ferromagnetic thin films. Acta Physica Sinica, 2013, 62(16): 167503. doi: 10.7498/aps.62.167503
    [12] Zhang Peng, Liu Lin, Chen Wei-Min. Analysis of characteristics and key influencing factors in magnetomechanical behavior for cable stress monitoring. Acta Physica Sinica, 2013, 62(17): 177501. doi: 10.7498/aps.62.177501
    [13] Song Gui-Lin, Zhou Xiao-Hui, Su Jian, Yang Hai-Gang, Wang Tian-Xing, Chang Fang-Gao. Effects of Gd and Co doping on the electrical and ferromagnetism properties of BiFeO3 ceramics. Acta Physica Sinica, 2012, 61(17): 177501. doi: 10.7498/aps.61.177501
    [14] Zhang Chang-Sheng, Ma Tian-Yu, Yan Mi. Magnetostriction-jump effect in〈110〉 oriented Tb0.3Dy0.7Fe1.95 crystal after non-coaxial field annealing. Acta Physica Sinica, 2011, 60(3): 037505. doi: 10.7498/aps.60.037505
    [15] Li Chuan, Liu Jing-Hua, Chen Li-Biao, Jiang Cheng-Bao, Xu Hui-Bin. Crytallographic orientation and magmetostriction of FeGa crystals. Acta Physica Sinica, 2011, 60(9): 097505. doi: 10.7498/aps.60.097505
    [16] Wang Lei, Yang Cheng-Tao, Xie Qun-Tiao, Ye Jing-Hong. The modeling and analysis of magnetoelectric effect in bilayer nanocomposites. Acta Physica Sinica, 2009, 58(5): 3515-3519. doi: 10.7498/aps.58.3515
    [17] Zheng Xiao-Ping, Zhang Pei-Feng, Li Fa-Shen, Hao Yuan. Magnetism, magetostriction, and M?ssbauer effect studies of Tb0.3Dy0.6Pr0.1(Fe1-xAlx)1.95 alloys. Acta Physica Sinica, 2009, 58(8): 5768-5772. doi: 10.7498/aps.58.5768
    [18] Zheng Xiao-Ping, Zhang Pei-Feng, Fan Duo-Wang, Li Fa-Shen, Hao Yuan. Magetostriction, spin reorientation and M?ssbauer effect studies of Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 alloys. Acta Physica Sinica, 2007, 56(1): 535-540. doi: 10.7498/aps.56.535
    [19] Zhang Cui-Ling, Zheng Rui-Lun, Teng Jiao. Influence of NiFeNb seed layer on hysteresis loops of permalloy films. Acta Physica Sinica, 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [20] Liu Guo-Dong, Li Yang-Xian, Hu Hai-Ning, Qu Jing-Ping, Liu Zhu-Hong, Dai Xue-Fang, Zhang Ming, Cui Yu-Ting, Chen Jing-Lan, Wu Guang-Heng. Giant magnetostriction of melt-spun Fe85Ga15ribbons. Acta Physica Sinica, 2004, 53(9): 3191-3195. doi: 10.7498/aps.53.3191
Metrics
  • Abstract views:  11745
  • PDF Downloads:  277
  • Cited By: 0
Publishing process
  • Received Date:  20 May 2019
  • Accepted Date:  02 July 2019
  • Available Online:  01 September 2019
  • Published Online:  20 September 2019

/

返回文章
返回