-
The nitrogen-vacancy (NV) centers in diamond have the advantages of stable triaxial structure, ultra-long electron spin coherence time and simple optical readout at room temperature. A nitrogen atom in the diamond crystal replaces a carbon atom and a vacancy is generated at the adjacent position, forming a point defect in the C3v space group structure. Its ground state and excited state are both spin triplet states. It is the key to achieving efficient preparation of optical initial state and extracting NV color center’s information in the researches of highly sensitive sensing magnetic detection, temperature detection, biological imaging, quantum computing, etc. However, there was no systematic study on relevant parameters of laser for high-concentration NV color center’s samples in previous experimental studies. Based on a high concentration diamond NV ensemble, we use pulsed optical detection magnetic resonance (ODMR) technology to systematically study the relationship among laser initial polarization time, information reading time and laser power, and the influence of laser incident polarization angle on the accuracy of sensing information. The effects of various laser parameters on the NV1 peak of ODMR on the [111] axis of the NVs of diamond are also investigated. The contrast of ODMR increases firstly with a sigmoid function and then decreases with an e-exponential function as the information reading time increases. The incident polarization angle of the laser is sinusoidal, with a period of 90°. According to the above experimental results, we finally choose the appropriate experimental parameters at 45.8 W/cm2 (300 μs of polarization, 700 ns, reading time, laser incident angle is 220°) for ODMR test. Compared with previous experimental parameters (polarization time was 50 us, read the time of 3000 ns, laser incident angle was 250°), the experimental results show that the contrast of ODMR increases from 2.1% to 4.6%, and the typical magnetic sensitivity is improved from 21.6 nT/Hz1/2 to 5.6 nT/Hz1/2. The optimization of the optical control of NVs in solid diamond is realized. The above results provide an effective support for the detection of high-sensitivity manipulation sensing based on high-concentration NV ensemble.
[1] Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar
[2] Suter D, Jelezko F 2017 Prog. Nucl. Magn. Reson. Spectrosc. 98-99 50Google Scholar
[3] Zhang C, Yuan H, Zhang N, Xu L, Zhang J, Li B, Fang J 2018 J. Phys. D: Appl. Phys. 51 155102Google Scholar
[4] Luo M X, Li H R, Lai H, Wang X 2016 Sci. Rep. 6 25977Google Scholar
[5] Balasubramanian G, Lazariev A, Arumugam S R, Duan D 2014 Curr. Opin. Chem. Biol. 20 69Google Scholar
[6] Doherty M W, Acosta V M, Jarmola A, Barson M S J, Hollenberg L C L 2013 Phys. Rev. B 90 12Google Scholar
[7] Yang Z, Shi F, Wang P, Raatz N, Li R, Qin X, Meijer J, Duan C, Ju C, Kong X, Du J 2018 Phys. Rev. B 97 205438Google Scholar
[8] Rendler T, Neburkova J, Zemek O, Kotek J, Zappe A, Chu Z, Cigler P, Wrachtrup J 2017 Nat. Commun. 8 14701Google Scholar
[9] Yang Z, Kong X, Li Z, Yang K, Yu P, Wang P, Wang Y, Qin X, Rong X, Duan C K, Shi F, Du J 2020 Adv. Quantum. Technol. 3 1900136Google Scholar
[10] Dréau A, Lesik M, Rondin L, Spinicelli P, Arcizet O, Roch J F, Jacques V 2011 Phys. Rev. B 84 195204Google Scholar
[11] Yavkin B V, Soltamov V A, Babunts R A, Anisimov A N, Baranov P G, Shakhov F M, Kidalov S V, Vul' A Y, Mamin G V, Orlinskii S B 2014 Appl. Magn. Reson. 45 1035Google Scholar
[12] Robledo L, Bernien H, van Weperen I, Hanson R 2010 Phys. Rev. Lett. 105 177403Google Scholar
[13] Wang F, Zu C, He L, Wang W B, Zhang W G, Duan L M 2016 Phys. Rev. B 94 064304Google Scholar
[14] Xu L, Yuan H, Zhang N, Zhang J, Bian G, Fan P, Li M, Zhang C, Zhai Y, Fang J 2019 Opt. Express 27 10787Google Scholar
[15] Shi F, Kong X, Wang P, Kong F, Zhao N, Liu R B, Du J 2013 Nat. Phys. 10 21Google Scholar
[16] Poggiali F, Cappellaro P, Fabbri N 2017 Phys. Rev. B 95 195308Google Scholar
[17] Giri R, Gorrini F, Dorigoni C, Avalos C E, Cazzanelli M, Tambalo S, Bifone A 2018 Phys. Rev. B 98 045401Google Scholar
[18] Robledo L, Bernien H, Sar T v d, Hanson R 2011 New J. Phys. 13 025013Google Scholar
[19] Chakraborty T, Zhang J, Suter D 2017 New J. Phys. 19 073030Google Scholar
[20] Fu K M C, Santori C, Barclay P E, Beausoleil R G 2010 Appl. Phys. Lett. 96 121907Google Scholar
[21] Bluvstein D, Zhang Z, Jayich A C B 2019 Phys. Rev. Lett. 122 076101Google Scholar
[22] 王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar
Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar
[23] Zhang N, Zhang C, Xu L, Ding M, Quan W, Tang Z, Yuan H 2016 Appl. Magn. Reson. 47 589Google Scholar
[24] Ma Y, Rohlfing M, Gali A 2010 Phys. Rev. B 81 041204Google Scholar
[25] Zhu Q, Guo H, Chen Y, Wu D, Zhao B, Wang L, Zhang Y, Zhao R, Du F, Tang J, Liu J 2018 Jpn. J. Appl. Phys. 57 110309Google Scholar
[26] 宁伟光, 张扬, 李中豪, 唐军 2019 量子光学学报 25 215Google Scholar
Ning W G, Zhang Y, Li Z H, Tang J 2019 Journal of Quantum Optics 25 215Google Scholar
[27] Chen X D, Zheng Y, Du B, Li D F, Li S, Dong Y, Guo G C, Sun F W 2019 Phys. Rev. Appl. 11 064024Google Scholar
[28] Fuchs G D, Dobrovitski V V, Toyli D M, Heremans F J, Weis C D, Schenkel T, Awschalom D D 2010 Nat. Phys. 6 668Google Scholar
[29] Alegre T P M, Santori C, Medeiros-Ribeiro G, Beausoleil R G 2007 Phys. Rev. B 76 165205Google Scholar
[30] 赵锐, 赵彬彬, 王磊, 郭浩, 唐军, 刘俊 2018 微纳电子技术 55 683Google Scholar
Zhao R, Zhao B B, Wang L, Guo H, Tang J, Liu J 2018 Micronanoelectronic Technology 55 683Google Scholar
-
-
[1] Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar
[2] Suter D, Jelezko F 2017 Prog. Nucl. Magn. Reson. Spectrosc. 98-99 50Google Scholar
[3] Zhang C, Yuan H, Zhang N, Xu L, Zhang J, Li B, Fang J 2018 J. Phys. D: Appl. Phys. 51 155102Google Scholar
[4] Luo M X, Li H R, Lai H, Wang X 2016 Sci. Rep. 6 25977Google Scholar
[5] Balasubramanian G, Lazariev A, Arumugam S R, Duan D 2014 Curr. Opin. Chem. Biol. 20 69Google Scholar
[6] Doherty M W, Acosta V M, Jarmola A, Barson M S J, Hollenberg L C L 2013 Phys. Rev. B 90 12Google Scholar
[7] Yang Z, Shi F, Wang P, Raatz N, Li R, Qin X, Meijer J, Duan C, Ju C, Kong X, Du J 2018 Phys. Rev. B 97 205438Google Scholar
[8] Rendler T, Neburkova J, Zemek O, Kotek J, Zappe A, Chu Z, Cigler P, Wrachtrup J 2017 Nat. Commun. 8 14701Google Scholar
[9] Yang Z, Kong X, Li Z, Yang K, Yu P, Wang P, Wang Y, Qin X, Rong X, Duan C K, Shi F, Du J 2020 Adv. Quantum. Technol. 3 1900136Google Scholar
[10] Dréau A, Lesik M, Rondin L, Spinicelli P, Arcizet O, Roch J F, Jacques V 2011 Phys. Rev. B 84 195204Google Scholar
[11] Yavkin B V, Soltamov V A, Babunts R A, Anisimov A N, Baranov P G, Shakhov F M, Kidalov S V, Vul' A Y, Mamin G V, Orlinskii S B 2014 Appl. Magn. Reson. 45 1035Google Scholar
[12] Robledo L, Bernien H, van Weperen I, Hanson R 2010 Phys. Rev. Lett. 105 177403Google Scholar
[13] Wang F, Zu C, He L, Wang W B, Zhang W G, Duan L M 2016 Phys. Rev. B 94 064304Google Scholar
[14] Xu L, Yuan H, Zhang N, Zhang J, Bian G, Fan P, Li M, Zhang C, Zhai Y, Fang J 2019 Opt. Express 27 10787Google Scholar
[15] Shi F, Kong X, Wang P, Kong F, Zhao N, Liu R B, Du J 2013 Nat. Phys. 10 21Google Scholar
[16] Poggiali F, Cappellaro P, Fabbri N 2017 Phys. Rev. B 95 195308Google Scholar
[17] Giri R, Gorrini F, Dorigoni C, Avalos C E, Cazzanelli M, Tambalo S, Bifone A 2018 Phys. Rev. B 98 045401Google Scholar
[18] Robledo L, Bernien H, Sar T v d, Hanson R 2011 New J. Phys. 13 025013Google Scholar
[19] Chakraborty T, Zhang J, Suter D 2017 New J. Phys. 19 073030Google Scholar
[20] Fu K M C, Santori C, Barclay P E, Beausoleil R G 2010 Appl. Phys. Lett. 96 121907Google Scholar
[21] Bluvstein D, Zhang Z, Jayich A C B 2019 Phys. Rev. Lett. 122 076101Google Scholar
[22] 王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar
Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar
[23] Zhang N, Zhang C, Xu L, Ding M, Quan W, Tang Z, Yuan H 2016 Appl. Magn. Reson. 47 589Google Scholar
[24] Ma Y, Rohlfing M, Gali A 2010 Phys. Rev. B 81 041204Google Scholar
[25] Zhu Q, Guo H, Chen Y, Wu D, Zhao B, Wang L, Zhang Y, Zhao R, Du F, Tang J, Liu J 2018 Jpn. J. Appl. Phys. 57 110309Google Scholar
[26] 宁伟光, 张扬, 李中豪, 唐军 2019 量子光学学报 25 215Google Scholar
Ning W G, Zhang Y, Li Z H, Tang J 2019 Journal of Quantum Optics 25 215Google Scholar
[27] Chen X D, Zheng Y, Du B, Li D F, Li S, Dong Y, Guo G C, Sun F W 2019 Phys. Rev. Appl. 11 064024Google Scholar
[28] Fuchs G D, Dobrovitski V V, Toyli D M, Heremans F J, Weis C D, Schenkel T, Awschalom D D 2010 Nat. Phys. 6 668Google Scholar
[29] Alegre T P M, Santori C, Medeiros-Ribeiro G, Beausoleil R G 2007 Phys. Rev. B 76 165205Google Scholar
[30] 赵锐, 赵彬彬, 王磊, 郭浩, 唐军, 刘俊 2018 微纳电子技术 55 683Google Scholar
Zhao R, Zhao B B, Wang L, Guo H, Tang J, Liu J 2018 Micronanoelectronic Technology 55 683Google Scholar
Catalog
Metrics
- Abstract views: 9410
- PDF Downloads: 314
- Cited By: 0