Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A new broadband radial vibration ultrasonic transducer based on 2-2 piezoelectric composite material

Chen Cheng Lin Shu-Yu

Citation:

A new broadband radial vibration ultrasonic transducer based on 2-2 piezoelectric composite material

Chen Cheng, Lin Shu-Yu
PDF
HTML
Get Citation
  • Radial vibration transducer has the advantages of large radiation area, high radiation efficiency, uniform radial radiation, and wide range of action. Therefore, it is widely used in the technical fields of ultrasonic liquid treatment such as underwater acoustics, ultrasonic degradation and sonochemistry. On the other hand, the 2-2 piezoelectric composite material is one of the most commonly researched piezoelectric composite materials with the best development prospects. Compared with traditional pure piezoelectric ceramics, this new type of material has the advantages of low impedance, low mechanical quality factor, and frequency bandwidth. Therefore, in this paper we propose a new broadband radial vibration ultrasonic transducer based on 2-2 piezoelectric composite material, which is mainly composed of an inner metal ring and an outer piezoelectric ceramic composite ring. First, the Newnham series-parallel theory and the uniform field theory are used to derive the equivalent parameters of the 2-2 piezoelectric composite material. Second, the radial vibration of the combination of the metal ring and the radially polarized piezoelectric composite ceramic ring are analyzed by the analytical method. The six-terminal electromechanical equivalent circuit of the transducer is obtained, and the frequency equation of the transducer is also obtained. And then the relationship between the resonant frequency and anti-resonant frequency of the transducer, as well as the effective electromechanical coupling coefficient, geometric size, and two-phase volume ratio are analyzed. It is concluded that in order to obtain higher electromechanical conversion efficiency, the design of the transducer radius ratio should be as close as possible to 0.35. Although the higher proportion of polymer phase will lead the electromechanical conversion efficiency to decrease, it can also bring better acoustic matching ability. Therefore, the lower proportion of polymer phase can be selected in the transducer design. The finite element method is used to numerically simulate the radial vibration of the new transducer. The results show that the resonance frequency and anti-resonance frequency obtained by the analytical method are in good agreement with the numerical simulation results. In addition, the acoustic field of the transducer under water is simulated numerically. The results show that compared with the traditional pure ceramic radial transducer, the new composite radial transducer has a large emission voltage response amplitude, the working bandwidth is nearly doubled, and the acoustic matching is better.
      Corresponding author: Lin Shu-Yu, sylin@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674206, 11874253)
    [1]

    刘世清, 麻磊磊 2020 陕西师范大学学报 (自然科学版) 48 60

    Liu S Q, Ma L L 2020 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 48 60

    [2]

    路德明 2001 水声换能器原理(青岛: 青岛海洋大学出版社) 第347−353页

    Lu D M 2001 Principle of Underwater Acoustic Transducer (Qingdao: Qingdao Ocean University Press) pp347−353 (in Chinese)

    [3]

    梁召峰, 莫喜平, 周光平 2011 声学学报 36 369

    Liang Z F, Mo X P, Zhou G P 2011 Acta Acustica 36 369

    [4]

    林书玉 2007 陕西师范大学学报 (自然科学版) 35 254

    Lin S Y 2007 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 35 254

    [5]

    林书玉 2008 声学技术 27 605

    Lin S Y 2008 Tech. Acoust. 27 605

    [6]

    林书玉 2004 超声换能器的原理及设计 (北京: 科学出版社)第15页

    Lin S Y 2004 The Principle And Design Of Ultrasonic Transducer (Beijing: Science Press) p15 (in Chinese)

    [7]

    薛术 2015 硕士学位论文 (西安: 西安电子科技大学)

    Xue S 2015 M. S. Thesis (Xian: Xidian University) (in Chinese)

    [8]

    Smith W A 1991 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38 40Google Scholar

    [9]

    Smith W A 1990 IEEE 1990 Ultrasonics Symposium Honolulu, HI, December 4–7, 1990 pp757−761

    [10]

    Newnham R E, Skinner D P, Crossden L E 1978 Mater. Res. Bull. 13 525Google Scholar

    [11]

    陈鹏, 沈亚鹏, 田晓耕 2006 力学季刊 1 29Google Scholar

    Chen P, Shen Y P, Tian X G 2006 Chin. Q. Mech. 1 29Google Scholar

    [12]

    林书玉, 王帅军, 付志强, 胡静, 王成会, 莫润阳 2013 声学学报 38 354

    Lin S Y, Wang S J, Fu Z Q, Hu J, Wang C H, Mo R Y 2013 Acta Acustica 38 354

    [13]

    Lin S Y, Fu Z Q, Zhang X L, Wang Y, Hu J 2012 Smart. Mater. Struct. 22 015005

    [14]

    王帅军, 林书玉 2011 陕西师范大学学报(自然科学版) 39 23

    Wang S J, Lin S Y 2011 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 39 23

    [15]

    Lin S Y 2008 Sens. Actuator, A 141 136Google Scholar

    [16]

    李争彩 2008 硕士学位论文 (西安: 陕西师范大学)

    Li Z C 2008 M. S. Thesis (Xian: Shaanxi Normal University) (in Chinese)

    [17]

    Poizat C H, Sester M 1999 Comput. Mater. Sci. 16 89Google Scholar

    [18]

    秦雷 2010 博士学位论文 (北京: 北京邮电大学)

    Qing L 2010 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [19]

    仲超 2019 博士学位论文 (北京: 北京邮电大学)

    Zhong C 2019 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [20]

    王莎, 林书玉 2019 物理学报 68 024303Google Scholar

    Wang S, Lin S Y 2019 Acta Phys. Sin. 68 024303Google Scholar

  • 图 1  新型径向振动复合材料圆环换能器

    Figure 1.  New radial vibration composite ring transducer.

    图 2  2-2型压电复合材料

    Figure 2.  2-2 piezoelectric composite.

    图 3  压电陶瓷复合材料圆环

    Figure 3.  Piezoelectric ceramic composite ring.

    图 4  径向极化压电陶瓷复合圆环径向振动的机电等效电路

    Figure 4.  Electromechanical equivalent circuit of radial vibration of a piezoelectric ceramic composite ring with radial polarization.

    图 5  径向振动金属圆环的机电等效电路

    Figure 5.  Electromechanical equivalent circuit of radial vibrating metal ring.

    图 6  径向振动压电陶瓷复合材料圆环换能器的机电等效电路

    Figure 6.  Electromechanical equivalent circuit of radial vibration piezoelectric ceramic composite toroidal transducer.

    图 7  (a) 换能器的一阶共振频率和反共振频率与几何尺寸之间的关系; (b) 换能器的有效机电耦合系数与几何尺寸之间的关系; (c) 换能器的一阶共振频率和反共振频率与两相占比之间的关系; (d) 换能器的有效机电耦合系数与两相占比之间的关系

    Figure 7.  (a) Relationship between the first-order resonance frequency and anti-resonance frequency of the transducer and the geometrical size; (b) relationship between the effective electromechanical coupling coefficient and geometric dimensions of the transducer; (c) relationship between the first-order resonance frequency and anti-resonance frequency of the transducer and the proportion of the two phases; (d) relationship between the effective electromechanical coupling coefficient of the transducer and the proportion of the two phases.

    图 8  (a) 换能器共振频率为53198 Hz时的振动模态; (b) 换能器共振频率为47552 Hz时的振动模态; (c) 换能器共振频率为52675 Hz时的振动模态; (d) 换能器共振频率为47901 Hz时的振动模态

    Figure 8.  (a) The vibration mode of the transducer when the resonance frequency is 53198 Hz; (b) the vibration mode of the transducer when the resonance frequency is 47552 Hz; (c) the vibration mode of the transducer when the resonance frequency is 52675 Hz; (d) the vibration mode of the transducer when the resonance frequency is 47901 Hz.

    图 9  (a) 换能器共振频率为53082 Hz时的振动模态; (b) 换能器共振频率为68070 Hz时的振动模态; (c) 换能器共振频率为55356 Hz时的振动模态; (d) 换能器共振频率为73747 Hz时的振动模态

    Figure 9.  (a) The vibration mode of the transducer when the resonance frequency is 53082 Hz; (b) the vibration mode of the transducer when the resonance frequency is 68070 Hz; (c) the vibration mode of the transducer when the resonance frequency is 55356 Hz; (d) the vibration mode of the transducer when the resonance frequency is 73747 Hz.

    图 10  新型复合材料径向换能器与传统纯陶瓷径向换能器的发射电压响应曲线

    Figure 10.  The emission voltage response curves of the new radial transducer and the traditional radial transducer.

    表 1  新型径向复合材料换能器共振频率的理论及数值模拟结果(一阶径向振动)

    Table 1.  Theoretical and numerical simulation results of the resonance frequency of the new radial composite transducer(first-order radial vibration).

    a/mmb/mmc/mmvp/vch/mmfr/Hzfa/Hzfr1/Hzfa1/HzA1/%A2/%
    616240.429651780.754216.253198.053941.02.663.08
    816240.429647428.949485.347552.047741.02.593.65
    616240.250650047.052761.252675.052941.04.990.34
    816240.250645949.448257.847901.048299.04.070.08
    DownLoad: CSV
  • [1]

    刘世清, 麻磊磊 2020 陕西师范大学学报 (自然科学版) 48 60

    Liu S Q, Ma L L 2020 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 48 60

    [2]

    路德明 2001 水声换能器原理(青岛: 青岛海洋大学出版社) 第347−353页

    Lu D M 2001 Principle of Underwater Acoustic Transducer (Qingdao: Qingdao Ocean University Press) pp347−353 (in Chinese)

    [3]

    梁召峰, 莫喜平, 周光平 2011 声学学报 36 369

    Liang Z F, Mo X P, Zhou G P 2011 Acta Acustica 36 369

    [4]

    林书玉 2007 陕西师范大学学报 (自然科学版) 35 254

    Lin S Y 2007 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 35 254

    [5]

    林书玉 2008 声学技术 27 605

    Lin S Y 2008 Tech. Acoust. 27 605

    [6]

    林书玉 2004 超声换能器的原理及设计 (北京: 科学出版社)第15页

    Lin S Y 2004 The Principle And Design Of Ultrasonic Transducer (Beijing: Science Press) p15 (in Chinese)

    [7]

    薛术 2015 硕士学位论文 (西安: 西安电子科技大学)

    Xue S 2015 M. S. Thesis (Xian: Xidian University) (in Chinese)

    [8]

    Smith W A 1991 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38 40Google Scholar

    [9]

    Smith W A 1990 IEEE 1990 Ultrasonics Symposium Honolulu, HI, December 4–7, 1990 pp757−761

    [10]

    Newnham R E, Skinner D P, Crossden L E 1978 Mater. Res. Bull. 13 525Google Scholar

    [11]

    陈鹏, 沈亚鹏, 田晓耕 2006 力学季刊 1 29Google Scholar

    Chen P, Shen Y P, Tian X G 2006 Chin. Q. Mech. 1 29Google Scholar

    [12]

    林书玉, 王帅军, 付志强, 胡静, 王成会, 莫润阳 2013 声学学报 38 354

    Lin S Y, Wang S J, Fu Z Q, Hu J, Wang C H, Mo R Y 2013 Acta Acustica 38 354

    [13]

    Lin S Y, Fu Z Q, Zhang X L, Wang Y, Hu J 2012 Smart. Mater. Struct. 22 015005

    [14]

    王帅军, 林书玉 2011 陕西师范大学学报(自然科学版) 39 23

    Wang S J, Lin S Y 2011 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 39 23

    [15]

    Lin S Y 2008 Sens. Actuator, A 141 136Google Scholar

    [16]

    李争彩 2008 硕士学位论文 (西安: 陕西师范大学)

    Li Z C 2008 M. S. Thesis (Xian: Shaanxi Normal University) (in Chinese)

    [17]

    Poizat C H, Sester M 1999 Comput. Mater. Sci. 16 89Google Scholar

    [18]

    秦雷 2010 博士学位论文 (北京: 北京邮电大学)

    Qing L 2010 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [19]

    仲超 2019 博士学位论文 (北京: 北京邮电大学)

    Zhong C 2019 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [20]

    王莎, 林书玉 2019 物理学报 68 024303Google Scholar

    Wang S, Lin S Y 2019 Acta Phys. Sin. 68 024303Google Scholar

  • [1] Mu Peng-Hua, Chen Hao, Liu Guo-Peng, Hu Guo-Si. Chaotic time delay feature cancellation and bandwidth enhancement in cascaded-coupled nanolasers. Acta Physica Sinica, 2024, 73(10): 104204. doi: 10.7498/aps.73.20231643
    [2] Liu Yang, Chen Cheng, Lin Shu-Yu. Radial sandwich radial-bending composite transducer designed based on acoustic black hole theory. Acta Physica Sinica, 2024, 73(8): 084302. doi: 10.7498/aps.73.20231983
    [3] Dong Yi-Lei, Chen Cheng, Lin Shu-Yu. Arbitrary variable thickness annular piezoelectric ultrasonic transducer based on transfer matrix method. Acta Physica Sinica, 2023, 72(5): 054304. doi: 10.7498/aps.72.20222110
    [4] Pang Shuang, Feng Yu-Ling, Yu Ping, Yao Zhi-Hai. Chaotic characteristics of output light from semiconductor laser with self-chaotic phase modulation and optical feedback. Acta Physica Sinica, 2022, 71(15): 150502. doi: 10.7498/aps.71.20220204
    [5] Zhang Tao-Ran, Mo Run-Yang, Hu Jing, Chen Shi, Wang Cheng-Hui, Guo Jian-Zhong. Dynamic analysis of bubble in liquid cavity wrapped by viscoelastic medium. Acta Physica Sinica, 2021, 70(12): 124301. doi: 10.7498/aps.70.20201876
    [6] Zhang Yi-Ning, Feng Yu-Ling, Wang Xiao-Qian, Zhao Zhen-Ming, Gao Chao, Yao Zhi-Hai. Time delay signature and bandwidth of chaotic laser output from semiconductor laser. Acta Physica Sinica, 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [7] Li Zeng, Feng Yu-Ling, Wang Xiao-Qian, Yao Zhi-Hai. Time delay characteristics and bandwidth of chaotic laser from semiconductor laser. Acta Physica Sinica, 2018, 67(14): 140501. doi: 10.7498/aps.67.20180035
    [8] Su Bin-Bin, Chen Jian-Jun, Wu Zheng-Mao, Xia Guang-Qiong. Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection. Acta Physica Sinica, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [9] Wang Zhi-Guo, Luo Hui, Fan Zhen-Fang, Xie Yuan-Ping. Research on an pump-probe rubidium magnetometer. Acta Physica Sinica, 2016, 65(21): 210702. doi: 10.7498/aps.65.210702
    [10] Yang Xian-Jie, Chen Jian-Jun, Xia Guang-Qiong, Wu Jia-Gui, Wu Zheng-Mao. Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system. Acta Physica Sinica, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [11] He Jun, Wei Yan-Yu, Gong Yu-Bin, Duan Zhao-Yun, Wang Wen-Xiang. A Ka-band folded double-ridged waveguide traveling-wave tube. Acta Physica Sinica, 2010, 59(4): 2843-2849. doi: 10.7498/aps.59.2843
    [12] Yan Sen-Lin. Bandwidth enhancement of a chaotic semiconductor laser transmitter by cross-phase modulation. Acta Physica Sinica, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [13] Yang Ling-Zhen, Qiao Zhan-Duo, Wu Yun-Qiao, Wang Yun-Cai. Study of chaotic bandwidth in erbium-doped ring fiber laser. Acta Physica Sinica, 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [14] Zhu Zhang-Ming, Hao Bao-Tian, Li Ru, Yang Yin-Tang. A novel nanometer CMOS interconnect optimal model with target delay and bandwidth constraint. Acta Physica Sinica, 2010, 59(3): 1997-2003. doi: 10.7498/aps.59.1997
    [15] Ren Ai-Hong, Liu Zheng-Ying, Zhang Rong-Zhu, Liu Jing-Lun, Sun Nian-Chun. Bandwidth in qusai-phase-matched frequency doubling. Acta Physica Sinica, 2010, 59(10): 7050-7054. doi: 10.7498/aps.59.7050
    [16] Zhao Yan-Feng. Chaos characteristics of the semiconductor laser with double external cavity optical feedback. Acta Physica Sinica, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [17] Liu Tao, Gu Wan-Yi, Shi Pei-Ming, Yu Song, Zhang Hua. Broadband tunable pulses in quasi-phase-matched crystal based optical parametric amplification. Acta Physica Sinica, 2009, 58(4): 2482-2487. doi: 10.7498/aps.58.2482
    [18] Lu Jun, Chen Xin-Yi, Wang Jian-Bo. Effects of circular unit of FSS on the performance of wave absorbing materials. Acta Physica Sinica, 2008, 57(11): 7200-7203. doi: 10.7498/aps.57.7200
    [19] Wang Yun-Cai, Zhang Geng-Wei, Wang An-Bang, Wang Bing-Jie, Li Yan-Li, Guo Ping. Bandwidth enhancement of semiconductor laser as a chaotic transmitter by external light injection. Acta Physica Sinica, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [20] Cheng Cheng, Zhang Hang. A semiconductor nanocrystal PbSe quantum dot fiber amplifier. Acta Physica Sinica, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
Metrics
  • Abstract views:  7481
  • PDF Downloads:  187
  • Cited By: 0
Publishing process
  • Received Date:  17 August 2020
  • Accepted Date:  03 September 2020
  • Available Online:  21 December 2020
  • Published Online:  05 January 2021

/

返回文章
返回