-
Boron neutron capture therapy (BNCT) is a dual tumor radiotherapy method combining boron-10 containing drugs and heavy ion therapy, which can kill cancer cells with almost no damage to normal cells, and achieve precise cell-scale treatment. However, the BNCT does not really enter into clinical application stage though it has been developed for nearly 70 years. The methods of measuring the concentration distribution of boron-10 containing drugs in vivo cannot meet the clinical needs, which is one of the core problems affecting the effect and safety of clinical application of BNCT. This article reviews the current methods of measuring the concentration distribution of boron-10 drugs, including the invasive estimation methods that have been used in clinical practice, the researching single photon emission tomography (SPECT) method, positron emission tomography (PET) method, nuclear magnetic resonance (NMR) method, etc., and analyzes the advantages and limitations of current methods. Based on the characteristics of the low gyromagnetic ratio of the boron-10 element and the extremely short magnetic resonance transverse relaxation time, the research ideas of ultra-short echo time magnetic resonance boron-10 quantitative imaging are proposed. The feasibility of quantitative measurement of boron-10 distribution in vivo based on ultrashort echo time magnetic resonance imaging is analyzed theoretically.
[1] Suzuke M 2020 Int. J. Clin. Oncol. 25 43Google Scholar
[2] Hu K, Yang Z M, Zhang L L, Xie L, Wang L, Xu H, Josephson L, Liang S H, Zhang M R 2020 Coordin. Chem. Rev. 405 213139Google Scholar
[3] Kim M S, Shin H B, Choi M G, Monzen H, Shim J G, Suh T S, Yoon D K 2020 Nucl. Eng. Technol. 52 155Google Scholar
[4] Romanov V, Isohashi K, Alobthani G, Beshr R, Horitsugi G, Kanai Y, Naka S, Watabe T, Shimosegawa E, Hatazawa J 2020 Ann. Nucl. Med. 34 155Google Scholar
[5] Protti N, Alberti D, Toppino A, Bortolussi S, Altieri S, Deagostino A, Aime S, Geninatti-Crich S 2019 Radio. Ther. Oncol. 133 S307
[6] Shu D Y, Tang X B, Geng C R, Zhang X D, Gong C H, Shao W C, Liu Y H 2019 Radiat. Phys. Chem. 156 222Google Scholar
[7] Gong C, Tang X, Fatemi S, Yu H, Shao W, Shu D, Geng C 2018 Int. J. Radiat. Res. 16 33
[8] Kanno I, Nishimatsu D, Funama F 2019 J. Instrum. 14 C02002Google Scholar
[9] Kobayashi T, Sakurai Y, Ishikawa M 2000 Med. Phys. 21 2124
[10] A.G W, W A, M R, N Y 2012 Neutron Capture Therapy: Principles and Applications (New York: Springer) p213
[11] Ishiwata K 2019 Ann. Nucl. Med. 33 223Google Scholar
[12] Lin Y C, Chou F I, Yang B H, Chang C W, Chen Y W, Hwang J J 2020 Ann. Nucl. Med. 34 58Google Scholar
[13] Bendel P 2005 NMR Biomed. 18 74Google Scholar
[14] Bendel P, Margalit R, Koudinova N, Salomon Y 2005 Radiat. Res. 164 680Google Scholar
[15] Bendel P, Sauerwein W 2001 Med. Phys. 28 178Google Scholar
[16] Edelstein W A, Glover G H, Hardy C J, Redington R W 1986 Magn. Reson. Med. 3 604Google Scholar
[17] Hoult D I, Richards R E 2011 J. Magn. Reson. 213 329Google Scholar
[18] 包尚联, 杜江, 高嵩 2013 物理学报 62 088701Google Scholar
Bao S L, Du J, Gao S 2013 Acta Phys. Sin. 62 088701Google Scholar
[19] Ma Y J, Searleman A C, Jang H, Wong J, Chang E Y, Corey-Bloom J, Bydder G M, Du J 2020 Radiology 294 362Google Scholar
[20] Du J, Ma G L, Li S H, Carl M, Szeverenyi N M, VandenBerg S, Corey-Bloom J, Bydder G M 2014 Neuroimage 87 32Google Scholar
[21] Gao S, Du J, Wang F, Bao S L 2013 Sci. China Life Sci. 56 672Google Scholar
[22] Li S, Huang X R, Li G Z, Zhang Y B, Li Z T, Liu L Y, Gao S 2019 Acta Radiol. 61 760
[23] Zhu Y C, Du J, Yang W C, Duan C J, Wang H Y, Gao S, Bao S L 2014 Chinese Phys. B 23 038702Google Scholar
-
[1] Suzuke M 2020 Int. J. Clin. Oncol. 25 43Google Scholar
[2] Hu K, Yang Z M, Zhang L L, Xie L, Wang L, Xu H, Josephson L, Liang S H, Zhang M R 2020 Coordin. Chem. Rev. 405 213139Google Scholar
[3] Kim M S, Shin H B, Choi M G, Monzen H, Shim J G, Suh T S, Yoon D K 2020 Nucl. Eng. Technol. 52 155Google Scholar
[4] Romanov V, Isohashi K, Alobthani G, Beshr R, Horitsugi G, Kanai Y, Naka S, Watabe T, Shimosegawa E, Hatazawa J 2020 Ann. Nucl. Med. 34 155Google Scholar
[5] Protti N, Alberti D, Toppino A, Bortolussi S, Altieri S, Deagostino A, Aime S, Geninatti-Crich S 2019 Radio. Ther. Oncol. 133 S307
[6] Shu D Y, Tang X B, Geng C R, Zhang X D, Gong C H, Shao W C, Liu Y H 2019 Radiat. Phys. Chem. 156 222Google Scholar
[7] Gong C, Tang X, Fatemi S, Yu H, Shao W, Shu D, Geng C 2018 Int. J. Radiat. Res. 16 33
[8] Kanno I, Nishimatsu D, Funama F 2019 J. Instrum. 14 C02002Google Scholar
[9] Kobayashi T, Sakurai Y, Ishikawa M 2000 Med. Phys. 21 2124
[10] A.G W, W A, M R, N Y 2012 Neutron Capture Therapy: Principles and Applications (New York: Springer) p213
[11] Ishiwata K 2019 Ann. Nucl. Med. 33 223Google Scholar
[12] Lin Y C, Chou F I, Yang B H, Chang C W, Chen Y W, Hwang J J 2020 Ann. Nucl. Med. 34 58Google Scholar
[13] Bendel P 2005 NMR Biomed. 18 74Google Scholar
[14] Bendel P, Margalit R, Koudinova N, Salomon Y 2005 Radiat. Res. 164 680Google Scholar
[15] Bendel P, Sauerwein W 2001 Med. Phys. 28 178Google Scholar
[16] Edelstein W A, Glover G H, Hardy C J, Redington R W 1986 Magn. Reson. Med. 3 604Google Scholar
[17] Hoult D I, Richards R E 2011 J. Magn. Reson. 213 329Google Scholar
[18] 包尚联, 杜江, 高嵩 2013 物理学报 62 088701Google Scholar
Bao S L, Du J, Gao S 2013 Acta Phys. Sin. 62 088701Google Scholar
[19] Ma Y J, Searleman A C, Jang H, Wong J, Chang E Y, Corey-Bloom J, Bydder G M, Du J 2020 Radiology 294 362Google Scholar
[20] Du J, Ma G L, Li S H, Carl M, Szeverenyi N M, VandenBerg S, Corey-Bloom J, Bydder G M 2014 Neuroimage 87 32Google Scholar
[21] Gao S, Du J, Wang F, Bao S L 2013 Sci. China Life Sci. 56 672Google Scholar
[22] Li S, Huang X R, Li G Z, Zhang Y B, Li Z T, Liu L Y, Gao S 2019 Acta Radiol. 61 760
[23] Zhu Y C, Du J, Yang W C, Duan C J, Wang H Y, Gao S, Bao S L 2014 Chinese Phys. B 23 038702Google Scholar
Catalog
Metrics
- Abstract views: 6460
- PDF Downloads: 158
- Cited By: 0