Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress on hydrogen-rich superconductors under high pressure

Sun Ying Liu Han-Yu Ma Yan-Ming

Citation:

Progress on hydrogen-rich superconductors under high pressure

Sun Ying, Liu Han-Yu, Ma Yan-Ming
PDF
HTML
Get Citation
  • In recent years, hydrogen-rich compounds under extremely high pressure have become the hot target materials for high-temperature superconductors. At present, two landmark progresses have been made in this field. Covalent H3S hydrogen-rich superconductors (Tc = 200 K) and ionic hydrogen-rich superconductors with hydrogen-cage structure, such as LaH10 (Tc = 260 K, –13 ℃), YH6 and YH9, have been successively synthesized, setting a new record of superconducting temperature. These studies have given rise to the hope of discovering room-temperature superconductors in hydrogen-rich compounds under high pressure. This paper focuses on the progress of hydrogen-rich superconductors with high critical temperature under high pressure, discusses the physical mechanism of high-temperature superconductivity in hydrogen-rich compounds, provide an outlook on the possibility of discovering room-temperature superconductors in hydrogen-rich compounds in the future, and offer the candidate system for high superconductivity in multiple hydrogen-rich compounds.
      Corresponding author: Liu Han-Yu, lhy@calypso.cn ; Ma Yan-Ming, mym@jlu.edu.cn
    • Funds: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 52090024), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), the National Natural Science Foundation of China (Grant No. 12074138), and the China Postdoctoral Science Foundation (Grant No. 2020M681032)
    [1]

    赵忠贤, 陈立泉, 崔长庚, 黄玉珍, 刘锦湘, 陈赓华, 李山林, 郭树权, 何业冶 1987 科学通报 32 177Google Scholar

    Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, He Y Z 1987 Chin. Sci. Bull. 32 177Google Scholar

    [2]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠 1987 科学通报 32 412Google Scholar

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z 1987 Chin. Sci. Bull. 32 412Google Scholar

    [3]

    Chu C W, Gao L, Chen F, Huang Z J, Meng R L, Xue Y Y 1993 Nature 365 323Google Scholar

    [4]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260Google Scholar

    [5]

    Ren Z A, Che G C, Dong X L, Yang J, Lu W, Yi W, Shen X L, Li Z C, Sun LL, Zhou F, Zhao Z X 2008 Europhys. Lett. 83 17002Google Scholar

    [6]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [7]

    Zhang L, Wang Y, Lv J, Ma Y M 2017 Nat. Rev. Mater. 2 17005Google Scholar

    [8]

    Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007Google Scholar

    [9]

    Lv J, Sun Y, Liu H, Ma Y 2020 Matter Radiat. Extrem. 5 068101Google Scholar

    [10]

    Hamlin J J 2015 Physica C 514 59Google Scholar

    [11]

    Prakash O, Kumar A, Thamizhavel A, Ramakrishnan S 2017 Science 355 52Google Scholar

    [12]

    Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56Google Scholar

    [13]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215Google Scholar

    [14]

    罗会仟 2018 物理 47 676Google Scholar

    Luo H Q 2018 Physics 47 676Google Scholar

    [15]

    靳常青 2017 科学通报 62 3947Google Scholar

    Jin C Q 2017 Chin. Sci. Bull. 62 3947Google Scholar

    [16]

    孙建平, Shahi P, 周花雪, 倪顺利, 王少华, 雷和畅, 王铂森, 董晓莉, 赵忠贤, 程金光 2018 物理学报 67 207404Google Scholar

    Sun J P, Shahi P, Zhou H X, Ni S L, Wang S H, Lei H C, Wang B S, Dong X L, Zhao Z X, Cheng J G 2018 Acta Phys. Sin. 67 207404Google Scholar

    [17]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [18]

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528Google Scholar

    [19]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001Google Scholar

    [20]

    Troyan I A, Semenok D V, Kvashnin A G, Ivanova A G, Prakapenka V B, Greenberg E, Gavriliuk A G, Lyubutin I S, Struzhkin V V, Oganov A R 2019 arXiv: 1908.01534

    [21]

    Kong P P, Minkov V S, Kuzovnikov M A, Besedin S P, Drozdov A P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Greenberg E, Knyazev D A, Eremets M I 2019 arXiv: 1909.10482

    [22]

    Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A, Oganov A R 2020 Mater. Today 33 36Google Scholar

    [23]

    Li Y, Hao J, Liu H, Li Y, Ma Y M 2014 J. Chem. Phys. 140 174712Google Scholar

    [24]

    Liu H, Naumov, I I, Hoffmann R, Ashcroft N W, Hemley R J 2017 Proc. Natl. Acad. Sci. U.S.A. 114 6990Google Scholar

    [25]

    Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y M 2017 Phys. Rev. Lett. 119 107001Google Scholar

    [26]

    Wigner E, Huntington H B 1935 J. Chem. Phys. 3 764Google Scholar

    [27]

    Ashcroft N W 1968 Phys. Rev. Lett. 21 1748Google Scholar

    [28]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar

    [29]

    Pickard C J, Needs R J 2007 Nat. Phys. 3 473Google Scholar

    [30]

    Zhang L J, Niu Y L, Li Q, Cui T, Wang Y, Ma Y M, He Z, Zou G T 2007 Solid State Commun. 141 610Google Scholar

    [31]

    Cudazzo P, Profeta G, Sanna A, Floris A, Continenza A, Massidda S, Gross E K 2008 Phys. Rev. Lett. 100 257001Google Scholar

    [32]

    Liu H, Zhu L, Cui W, Ma Y M 2012 J. Chem. Phys. 137 074501Google Scholar

    [33]

    Liu H Y, Wang H, Ma Y M 2012 J. Phys. Chem. C 116 9221Google Scholar

    [34]

    McMahon J M, Ceperley D M 2011 Phys. Rev. B 84 144515Google Scholar

    [35]

    Dias R P, Silvera I F 2017 Science 355 715Google Scholar

    [36]

    Eremets M I, Drozdov A P, Kong P P, Wang H 2019 Nat. Phys. 15 1246Google Scholar

    [37]

    Loubeyre P, Occelli F, Dumas P 2020 Nature 577 631Google Scholar

    [38]

    Monacelli L, Errea I, Calandra M, Mauri F 2020 Nat. Phys.

    [39]

    Ginzburg V L 1999 Physics Uspekhi 42 353Google Scholar

    [40]

    Wang H, Li X, Gao G Y, Li Y W, Ma Y M 2018 Wires. Comput. Mol. Sci. 8 e1330

    [41]

    Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R, Eremets M 2020 Phys. Rep. 856 1Google Scholar

    [42]

    Gilman J J 1971 Phys. Rev. Lett. 26 546Google Scholar

    [43]

    Satterthwaite C B, Toepke I L 1970 Phys. Rev. Lett. 25 741Google Scholar

    [44]

    Skoskiewicz T 1972 Phys. Status Solidi A 11 K123Google Scholar

    [45]

    Stritzker B, Buckel W 1972 Z. Phys. 257 8

    [46]

    Stritzker B 1974 Z. Phys. 268 261Google Scholar

    [47]

    Welter J M, Johnen F J 1977 Z. Phys. B 27 227Google Scholar

    [48]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002Google Scholar

    [49]

    Eremets M I, Trojan I A, Medvedev S A, Tse J S, Yao Y 2008 Science 319 1506Google Scholar

    [50]

    Kim D Y, Scheicher R H, Lebegue S, Prasongkit J, Arnaud B, Alouani M, Ahuja R 2008 Proc. Natl. Acad. Sci. U.S.A. 105 16454Google Scholar

    [51]

    Martinez-Canales M, Oganov A R, Ma Y, Yan Y, Lyakhov A O, Bergara A 2009 Phys. Rev. Lett. 102 087005Google Scholar

    [52]

    Degtyareva O, Proctor J E, Guillaume C L, Gregoryanz E, Hanfland M 2009 Solid State Commun. 149 1583Google Scholar

    [53]

    Bi T, Zarifi N, Terpstra T, Zurek E 2019 Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Amsterdam: Elsevier)

    [54]

    Chen X J, Struzhkin V V, Song Y, Goncharov A F, Ahart M, Liu Z, Mao H K, Hemley R J 2008 Proc. Natl. Acad. Sci. U.S.A. 105 20Google Scholar

    [55]

    Gao G, Oganov A R, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y, Zou G 2008 Phys. Rev. Lett. 101 107002Google Scholar

    [56]

    Tse J S, Yao Y, Tanaka K 2007 Phys. Rev. Lett. 98 117004Google Scholar

    [57]

    Li Y, Gao G, Xie Y, Ma Y, Cui T, Zou G 2010 Proc. Natl. Acad. Sci. U.S.A. 107 15708Google Scholar

    [58]

    Drozdov A P, Eremets M I, Troyan I A 2015 arXiv: 1812.01561

    [59]

    Pepin C, Loubeyre P, Occelli F, Dumas P 2015 Proc. Natl. Acad. Sci. U.S.A. 112 7673Google Scholar

    [60]

    Struzhkin V V, Kim D Y, Stavrou E, Muramatsu T, Mao H K, Pickard C J, Needs R J, Prakapenka V B, Goncharov A F 2016 Nat. Commun. 7 12267Google Scholar

    [61]

    Chen W, Semenok D V, Kvashnin A G, Kruglov I A, Galasso M, Song H, Huang X, Duan D, Goncharov A F, Prakapenka V B 2020 arXiv: 2004.12294

    [62]

    Wang H, Tse J S, Tanaka K, Iitaka T, Ma Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 6463Google Scholar

    [63]

    Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, Cui T 2014 Sci. Rep. 4 6968

    [64]

    Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N, Ohishi Y 2016 Nat. Phys. 12 835Google Scholar

    [65]

    Li Y W, Wang L, Liu H Y, Zhang Y W, Hao J, Pickard C J, Nelson J R, Needs R J, Li W T, Huang Y W, Errea I, Calandra M, Mauri F, Ma Y M 2016 Phys. Rev. B 93 020103(R)

    [66]

    Bernstein N, Hellberg C S, Johannes M D, Mazin I I, Mehl M J 2015 Phys. Rev. B 91 060511(R)Google Scholar

    [67]

    Strobel T A, Ganesh P, Somayazulu M, Kent P R, Hemley R J 2011 Phys. Rev. Lett. 107 255503Google Scholar

    [68]

    Yuan Y, Li Y, Fang G, Liu G, Pei C, Li X, Zheng H, Yang K, Wang L 2019 Natl. Sci. Rev. 6 524Google Scholar

    [69]

    Degtyarenko N N, Mazur E A 2016 J. Exp. Theor. Phys. 123 277Google Scholar

    [70]

    Flores-Livas J A, Amsler M, Heil C, Sanna A, Boeri L, Profeta G, Wolverton C, Goedecker S, Gross E K U 2016 Phys. Rev. B 93 020508Google Scholar

    [71]

    Fu Y H, Du X P, Zhang L J, Peng F, Zhang M, Pickard C J, Needs R J, Singh D J, Zheng W T, Ma Y M 2016 Chem. Mater. 28 1746Google Scholar

    [72]

    Liu H Y, Li Y W, Gao G Y, Tse J S, Naumov I I 2016 J. Phys. Chem. C 120 3458Google Scholar

    [73]

    Shamp A, Terpstra T, Bi T, Falls Z, Avery P, Zurek E 2016 J. Am. Chem. Soc. 138 1884Google Scholar

    [74]

    Liu H Y, Naumov I I, Geballe Z M, Somayazulu M, Tse J S, Hemley R J 2018 Phys. Rev. B 98 100102Google Scholar

    [75]

    Li X, Huang X L, Duan D F, Pickard C J, Zhou D, Xie H, Zhuang Q, Huang Y P, Zhou Q, Liu B B, Cui T 2019 Nat. Commun. 10 3461 7

    [76]

    Salke N P, Esfahani M M D, Zhang Y, Kruglov I A, Zhou J, Wang Y, Greenberg E, Prakapenka V B, Liu J, Oganov A R, Lin J F 2019 Nat. Commun. 10 4453Google Scholar

    [77]

    Zhou D, Semenok D V, Duan D, Xie H, Chen W, Huang X, Li X, Liu B, Oganov A R, Cui T 2020 Sci. Adv. 6 eaax6849Google Scholar

    [78]

    Zhou D, Semenok D V, Xie H, Huang X, Duan D, Aperis A, Oppeneer P M, Galasso M, Kartsev A I, Kvashnin A G, Oganov A R, Cui T 2020 J. Am. Chem. Soc. 142 2803Google Scholar

    [79]

    Ma L, Liu G, Wang Y, Zhou M, Liu H, Peng F, Wang H, Ma Y 2020 arXiv: 2002. 09900

    [80]

    Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, Dias R P 2020 Nature 586 373Google Scholar

    [81]

    Grockowiak A, Ahart M, Helm T, Coniglio W, Kumar R, Somayazulu M, Meng Y, Oliff M, Williams V, Ashcroft N 2020 arXiv: 2006. 03004

    [82]

    Zurek E, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O 2009 Proc. Natl. Acad. Sci. U.S.A. 106 17640Google Scholar

    [83]

    Sun Y, Lv J, Xie Y, Liu H, Ma Y 2019 Phys. Rev. Lett. 123 097001Google Scholar

  • 图 1  超导体年表. 方形、圆形和菱形色块分别表示BCS超导体、铜氧化物超导体和铁基超导体. 黑色和蓝色标签分别标注常压超导材料和高压超导材料及合成压强

    Figure 1.  Timeline of superconductors. The square, circle, and rhombus color blocks respectively represent BCS superconductors, cuprate superconductors, and iron-based superconductors. Black and blue labels represent superconducting materials at atmospheric pressure and high pressure as well as the pressure value required to synthesize these superconductors.

  • [1]

    赵忠贤, 陈立泉, 崔长庚, 黄玉珍, 刘锦湘, 陈赓华, 李山林, 郭树权, 何业冶 1987 科学通报 32 177Google Scholar

    Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, He Y Z 1987 Chin. Sci. Bull. 32 177Google Scholar

    [2]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠 1987 科学通报 32 412Google Scholar

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z 1987 Chin. Sci. Bull. 32 412Google Scholar

    [3]

    Chu C W, Gao L, Chen F, Huang Z J, Meng R L, Xue Y Y 1993 Nature 365 323Google Scholar

    [4]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260Google Scholar

    [5]

    Ren Z A, Che G C, Dong X L, Yang J, Lu W, Yi W, Shen X L, Li Z C, Sun LL, Zhou F, Zhao Z X 2008 Europhys. Lett. 83 17002Google Scholar

    [6]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [7]

    Zhang L, Wang Y, Lv J, Ma Y M 2017 Nat. Rev. Mater. 2 17005Google Scholar

    [8]

    Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007Google Scholar

    [9]

    Lv J, Sun Y, Liu H, Ma Y 2020 Matter Radiat. Extrem. 5 068101Google Scholar

    [10]

    Hamlin J J 2015 Physica C 514 59Google Scholar

    [11]

    Prakash O, Kumar A, Thamizhavel A, Ramakrishnan S 2017 Science 355 52Google Scholar

    [12]

    Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56Google Scholar

    [13]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215Google Scholar

    [14]

    罗会仟 2018 物理 47 676Google Scholar

    Luo H Q 2018 Physics 47 676Google Scholar

    [15]

    靳常青 2017 科学通报 62 3947Google Scholar

    Jin C Q 2017 Chin. Sci. Bull. 62 3947Google Scholar

    [16]

    孙建平, Shahi P, 周花雪, 倪顺利, 王少华, 雷和畅, 王铂森, 董晓莉, 赵忠贤, 程金光 2018 物理学报 67 207404Google Scholar

    Sun J P, Shahi P, Zhou H X, Ni S L, Wang S H, Lei H C, Wang B S, Dong X L, Zhao Z X, Cheng J G 2018 Acta Phys. Sin. 67 207404Google Scholar

    [17]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [18]

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528Google Scholar

    [19]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001Google Scholar

    [20]

    Troyan I A, Semenok D V, Kvashnin A G, Ivanova A G, Prakapenka V B, Greenberg E, Gavriliuk A G, Lyubutin I S, Struzhkin V V, Oganov A R 2019 arXiv: 1908.01534

    [21]

    Kong P P, Minkov V S, Kuzovnikov M A, Besedin S P, Drozdov A P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Greenberg E, Knyazev D A, Eremets M I 2019 arXiv: 1909.10482

    [22]

    Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A, Oganov A R 2020 Mater. Today 33 36Google Scholar

    [23]

    Li Y, Hao J, Liu H, Li Y, Ma Y M 2014 J. Chem. Phys. 140 174712Google Scholar

    [24]

    Liu H, Naumov, I I, Hoffmann R, Ashcroft N W, Hemley R J 2017 Proc. Natl. Acad. Sci. U.S.A. 114 6990Google Scholar

    [25]

    Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y M 2017 Phys. Rev. Lett. 119 107001Google Scholar

    [26]

    Wigner E, Huntington H B 1935 J. Chem. Phys. 3 764Google Scholar

    [27]

    Ashcroft N W 1968 Phys. Rev. Lett. 21 1748Google Scholar

    [28]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar

    [29]

    Pickard C J, Needs R J 2007 Nat. Phys. 3 473Google Scholar

    [30]

    Zhang L J, Niu Y L, Li Q, Cui T, Wang Y, Ma Y M, He Z, Zou G T 2007 Solid State Commun. 141 610Google Scholar

    [31]

    Cudazzo P, Profeta G, Sanna A, Floris A, Continenza A, Massidda S, Gross E K 2008 Phys. Rev. Lett. 100 257001Google Scholar

    [32]

    Liu H, Zhu L, Cui W, Ma Y M 2012 J. Chem. Phys. 137 074501Google Scholar

    [33]

    Liu H Y, Wang H, Ma Y M 2012 J. Phys. Chem. C 116 9221Google Scholar

    [34]

    McMahon J M, Ceperley D M 2011 Phys. Rev. B 84 144515Google Scholar

    [35]

    Dias R P, Silvera I F 2017 Science 355 715Google Scholar

    [36]

    Eremets M I, Drozdov A P, Kong P P, Wang H 2019 Nat. Phys. 15 1246Google Scholar

    [37]

    Loubeyre P, Occelli F, Dumas P 2020 Nature 577 631Google Scholar

    [38]

    Monacelli L, Errea I, Calandra M, Mauri F 2020 Nat. Phys.

    [39]

    Ginzburg V L 1999 Physics Uspekhi 42 353Google Scholar

    [40]

    Wang H, Li X, Gao G Y, Li Y W, Ma Y M 2018 Wires. Comput. Mol. Sci. 8 e1330

    [41]

    Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R, Eremets M 2020 Phys. Rep. 856 1Google Scholar

    [42]

    Gilman J J 1971 Phys. Rev. Lett. 26 546Google Scholar

    [43]

    Satterthwaite C B, Toepke I L 1970 Phys. Rev. Lett. 25 741Google Scholar

    [44]

    Skoskiewicz T 1972 Phys. Status Solidi A 11 K123Google Scholar

    [45]

    Stritzker B, Buckel W 1972 Z. Phys. 257 8

    [46]

    Stritzker B 1974 Z. Phys. 268 261Google Scholar

    [47]

    Welter J M, Johnen F J 1977 Z. Phys. B 27 227Google Scholar

    [48]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002Google Scholar

    [49]

    Eremets M I, Trojan I A, Medvedev S A, Tse J S, Yao Y 2008 Science 319 1506Google Scholar

    [50]

    Kim D Y, Scheicher R H, Lebegue S, Prasongkit J, Arnaud B, Alouani M, Ahuja R 2008 Proc. Natl. Acad. Sci. U.S.A. 105 16454Google Scholar

    [51]

    Martinez-Canales M, Oganov A R, Ma Y, Yan Y, Lyakhov A O, Bergara A 2009 Phys. Rev. Lett. 102 087005Google Scholar

    [52]

    Degtyareva O, Proctor J E, Guillaume C L, Gregoryanz E, Hanfland M 2009 Solid State Commun. 149 1583Google Scholar

    [53]

    Bi T, Zarifi N, Terpstra T, Zurek E 2019 Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Amsterdam: Elsevier)

    [54]

    Chen X J, Struzhkin V V, Song Y, Goncharov A F, Ahart M, Liu Z, Mao H K, Hemley R J 2008 Proc. Natl. Acad. Sci. U.S.A. 105 20Google Scholar

    [55]

    Gao G, Oganov A R, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y, Zou G 2008 Phys. Rev. Lett. 101 107002Google Scholar

    [56]

    Tse J S, Yao Y, Tanaka K 2007 Phys. Rev. Lett. 98 117004Google Scholar

    [57]

    Li Y, Gao G, Xie Y, Ma Y, Cui T, Zou G 2010 Proc. Natl. Acad. Sci. U.S.A. 107 15708Google Scholar

    [58]

    Drozdov A P, Eremets M I, Troyan I A 2015 arXiv: 1812.01561

    [59]

    Pepin C, Loubeyre P, Occelli F, Dumas P 2015 Proc. Natl. Acad. Sci. U.S.A. 112 7673Google Scholar

    [60]

    Struzhkin V V, Kim D Y, Stavrou E, Muramatsu T, Mao H K, Pickard C J, Needs R J, Prakapenka V B, Goncharov A F 2016 Nat. Commun. 7 12267Google Scholar

    [61]

    Chen W, Semenok D V, Kvashnin A G, Kruglov I A, Galasso M, Song H, Huang X, Duan D, Goncharov A F, Prakapenka V B 2020 arXiv: 2004.12294

    [62]

    Wang H, Tse J S, Tanaka K, Iitaka T, Ma Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 6463Google Scholar

    [63]

    Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, Cui T 2014 Sci. Rep. 4 6968

    [64]

    Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N, Ohishi Y 2016 Nat. Phys. 12 835Google Scholar

    [65]

    Li Y W, Wang L, Liu H Y, Zhang Y W, Hao J, Pickard C J, Nelson J R, Needs R J, Li W T, Huang Y W, Errea I, Calandra M, Mauri F, Ma Y M 2016 Phys. Rev. B 93 020103(R)

    [66]

    Bernstein N, Hellberg C S, Johannes M D, Mazin I I, Mehl M J 2015 Phys. Rev. B 91 060511(R)Google Scholar

    [67]

    Strobel T A, Ganesh P, Somayazulu M, Kent P R, Hemley R J 2011 Phys. Rev. Lett. 107 255503Google Scholar

    [68]

    Yuan Y, Li Y, Fang G, Liu G, Pei C, Li X, Zheng H, Yang K, Wang L 2019 Natl. Sci. Rev. 6 524Google Scholar

    [69]

    Degtyarenko N N, Mazur E A 2016 J. Exp. Theor. Phys. 123 277Google Scholar

    [70]

    Flores-Livas J A, Amsler M, Heil C, Sanna A, Boeri L, Profeta G, Wolverton C, Goedecker S, Gross E K U 2016 Phys. Rev. B 93 020508Google Scholar

    [71]

    Fu Y H, Du X P, Zhang L J, Peng F, Zhang M, Pickard C J, Needs R J, Singh D J, Zheng W T, Ma Y M 2016 Chem. Mater. 28 1746Google Scholar

    [72]

    Liu H Y, Li Y W, Gao G Y, Tse J S, Naumov I I 2016 J. Phys. Chem. C 120 3458Google Scholar

    [73]

    Shamp A, Terpstra T, Bi T, Falls Z, Avery P, Zurek E 2016 J. Am. Chem. Soc. 138 1884Google Scholar

    [74]

    Liu H Y, Naumov I I, Geballe Z M, Somayazulu M, Tse J S, Hemley R J 2018 Phys. Rev. B 98 100102Google Scholar

    [75]

    Li X, Huang X L, Duan D F, Pickard C J, Zhou D, Xie H, Zhuang Q, Huang Y P, Zhou Q, Liu B B, Cui T 2019 Nat. Commun. 10 3461 7

    [76]

    Salke N P, Esfahani M M D, Zhang Y, Kruglov I A, Zhou J, Wang Y, Greenberg E, Prakapenka V B, Liu J, Oganov A R, Lin J F 2019 Nat. Commun. 10 4453Google Scholar

    [77]

    Zhou D, Semenok D V, Duan D, Xie H, Chen W, Huang X, Li X, Liu B, Oganov A R, Cui T 2020 Sci. Adv. 6 eaax6849Google Scholar

    [78]

    Zhou D, Semenok D V, Xie H, Huang X, Duan D, Aperis A, Oppeneer P M, Galasso M, Kartsev A I, Kvashnin A G, Oganov A R, Cui T 2020 J. Am. Chem. Soc. 142 2803Google Scholar

    [79]

    Ma L, Liu G, Wang Y, Zhou M, Liu H, Peng F, Wang H, Ma Y 2020 arXiv: 2002. 09900

    [80]

    Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, Dias R P 2020 Nature 586 373Google Scholar

    [81]

    Grockowiak A, Ahart M, Helm T, Coniglio W, Kumar R, Somayazulu M, Meng Y, Oliff M, Williams V, Ashcroft N 2020 arXiv: 2006. 03004

    [82]

    Zurek E, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O 2009 Proc. Natl. Acad. Sci. U.S.A. 106 17640Google Scholar

    [83]

    Sun Y, Lv J, Xie Y, Liu H, Ma Y 2019 Phys. Rev. Lett. 123 097001Google Scholar

  • [1] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [2] Li Huan, Ye Xiao-Qiu, Tang Jun, Ao Bing-Yun, Gao Tao. Structure and stability of possible new L i-Y-H ternary hydrides. Acta Physica Sinica, 2022, 71(1): 017401. doi: 10.7498/aps.71.20210824
    [3] Zhou Jia-Jian, Zhang Yu-Wen, He Chao-Yu, Ouyang Tao, Li Jin, Tang Chao. First-principles study of structure prediction and electronic properties of two-dimensional SiP2 allotropes. Acta Physica Sinica, 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [4] Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang. Angle-resolved photoemission spectroscopy studies on the electronic structure and superconductivity mechanism for high temperature superconductors. Acta Physica Sinica, 2021, 70(1): 017406. doi: 10.7498/aps.70.20201913
    [5] Song Ting, Sun Xiao-Wei, Wei Xiao-Ping, Ouyang Yu-Hua, Zhang Chun-Lin, Guo Peng, Zhao Wei. High-pressure structure prediction and high-temperature structural stability of periclase. Acta Physica Sinica, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [6] Wang Zhi-Cheng, Cao Guang-Han. Self-doped iron-based superconductors with intergrowth structures. Acta Physica Sinica, 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [7] Song Yan-Peng, Chen Hong-Xiang, Guo Jian-Gang, Chen Xiao-Long. Crystal structures and physical properties of novel 4d/5d based superconductors. Acta Physica Sinica, 2018, 67(12): 127101. doi: 10.7498/aps.67.20180767
    [8] Li Shi-Liang, Liu Zhao-Yu, Gu Yan-Hong. Nematic fluctuations in iron-based superconductors studied by resistivity change under uniaxial pressure. Acta Physica Sinica, 2018, 67(12): 127401. doi: 10.7498/aps.67.20180627
    [9] Sun Jian-Ping, Prashant Shahi, Zhou Hua-Xue, Ni Shun-Li, Wang Shao-Hua, Lei He-Chang, Wang Bo-Sen, Dong Xiao-Li, Zhao Zhong-Xian, Cheng Jin-Guang. Effect of high pressure on intercalated FeSe high-Tc superconductors. Acta Physica Sinica, 2018, 67(20): 207404. doi: 10.7498/aps.67.20181319
    [10] Guo Jing, Wu Qi, Sun Li-Ling. Pressure-induced phenomena and physics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [11] Duan De-Fang, Ma Yan-Bin, Shao Zi-Ji, Xie Hui, Huang Xiao-Li, Liu Bing-Bing, Cui Tian. Structures and novel superconductivity of hydrogen-rich compounds under high pressures. Acta Physica Sinica, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [12] Peng Jun-Hui, Zeng Qing-Feng, Xie Cong-Wei, Zhu Kai-Jin, Tan Jun-Hua. High-pressure structure prediction of Hf-C system and first-principle simulation of their electronic properties. Acta Physica Sinica, 2015, 64(23): 236102. doi: 10.7498/aps.64.236102
    [13] Shi Liang-Ma, Zhang Shi-Jun, Zhu Ren-Yi. Numerical simulation of vortex structure in mesoscopic two-gap superconductor. Acta Physica Sinica, 2013, 62(9): 097401. doi: 10.7498/aps.62.097401
    [14] Zhao Hong-Wei, Meng Hao, Zhang Ling-Feng, Zha Guo-Qiao, Zhou Shi-Ping. Transation of charged vortex structures in underdoped high-temperature superconductors. Acta Physica Sinica, 2009, 58(6): 4189-4193. doi: 10.7498/aps.58.4189
    [15] Chen Zhen-Ping, Xue Yun-Cai, Su Yu-Ling, Gong Shi-Cheng, Zhang Jin-Cang. Phase structures and local electron structures of Gd-doped YBa2Cu3O7-δ systems. Acta Physica Sinica, 2005, 54(11): 5382-5388. doi: 10.7498/aps.54.5382
    [16] XIONG HAN, CHE GUANG-CAN, YAO YU-SHU, NI YONG-MING, DONG CHENG, JIA SHUN-LIAN. HIGH PRESSURE SYNTHESIS OF Ca DOPED (RPr)-123 SUPERCONDUCTORS. Acta Physica Sinica, 2001, 50(9): 1783-1786. doi: 10.7498/aps.50.1783
    [17] TAN MING-QIU, TAO XIANG-MING. STUDY ON THE ELECTRONIC STRUCTURE OF HIGH-TC SUPERCONDUCTOR MgB2. Acta Physica Sinica, 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
    [18] QU HAI, ZHOU SHI-PING. VORTEX LATTICE IN A HIGH-Tc SUPERCONDUCTOR OF MIXED PAIRING SYMMETRY. Acta Physica Sinica, 1999, 48(2): 352-362. doi: 10.7498/aps.48.352
    [19] NIU JIN-HAI, ZHOU SHI-PING, XU KE-XI. STRUCTURE OF SINGLE VORTEX IN A s+id WAVE SUPERCONDUCTOR. Acta Physica Sinica, 1998, 47(6): 985-989. doi: 10.7498/aps.47.985
    [20] WANG GUANG-HOU. HYDROGEN DISTRIBUTION IN THE ION IMPLANTED SUPERCONDUCTOR PdCu AND ITS TRANSITION TEMPERATURE. Acta Physica Sinica, 1984, 33(10): 1434-1436. doi: 10.7498/aps.33.1434
Metrics
  • Abstract views:  13264
  • PDF Downloads:  869
  • Cited By: 0
Publishing process
  • Received Date:  22 December 2020
  • Accepted Date:  30 December 2020
  • Available Online:  03 January 2021
  • Published Online:  05 January 2021

/

返回文章
返回