-
In recent years, hydrogen-rich compounds under extremely high pressure have become the hot target materials for high-temperature superconductors. At present, two landmark progresses have been made in this field. Covalent H3S hydrogen-rich superconductors (Tc = 200 K) and ionic hydrogen-rich superconductors with hydrogen-cage structure, such as LaH10 (Tc = 260 K, –13 ℃), YH6 and YH9, have been successively synthesized, setting a new record of superconducting temperature. These studies have given rise to the hope of discovering room-temperature superconductors in hydrogen-rich compounds under high pressure. This paper focuses on the progress of hydrogen-rich superconductors with high critical temperature under high pressure, discusses the physical mechanism of high-temperature superconductivity in hydrogen-rich compounds, provide an outlook on the possibility of discovering room-temperature superconductors in hydrogen-rich compounds in the future, and offer the candidate system for high superconductivity in multiple hydrogen-rich compounds.
-
Keywords:
- hydrogen-rich superconductor /
- high pressure /
- structure prediction
[1] 赵忠贤, 陈立泉, 崔长庚, 黄玉珍, 刘锦湘, 陈赓华, 李山林, 郭树权, 何业冶 1987 科学通报 32 177Google Scholar
Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, He Y Z 1987 Chin. Sci. Bull. 32 177Google Scholar
[2] 赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠 1987 科学通报 32 412Google Scholar
Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z 1987 Chin. Sci. Bull. 32 412Google Scholar
[3] Chu C W, Gao L, Chen F, Huang Z J, Meng R L, Xue Y Y 1993 Nature 365 323Google Scholar
[4] Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260Google Scholar
[5] Ren Z A, Che G C, Dong X L, Yang J, Lu W, Yi W, Shen X L, Li Z C, Sun LL, Zhou F, Zhao Z X 2008 Europhys. Lett. 83 17002Google Scholar
[6] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar
[7] Zhang L, Wang Y, Lv J, Ma Y M 2017 Nat. Rev. Mater. 2 17005Google Scholar
[8] Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007Google Scholar
[9] Lv J, Sun Y, Liu H, Ma Y 2020 Matter Radiat. Extrem. 5 068101Google Scholar
[10] Hamlin J J 2015 Physica C 514 59Google Scholar
[11] Prakash O, Kumar A, Thamizhavel A, Ramakrishnan S 2017 Science 355 52Google Scholar
[12] Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56Google Scholar
[13] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215Google Scholar
[14] 罗会仟 2018 物理 47 676Google Scholar
Luo H Q 2018 Physics 47 676Google Scholar
[15] 靳常青 2017 科学通报 62 3947Google Scholar
Jin C Q 2017 Chin. Sci. Bull. 62 3947Google Scholar
[16] 孙建平, Shahi P, 周花雪, 倪顺利, 王少华, 雷和畅, 王铂森, 董晓莉, 赵忠贤, 程金光 2018 物理学报 67 207404Google Scholar
Sun J P, Shahi P, Zhou H X, Ni S L, Wang S H, Lei H C, Wang B S, Dong X L, Zhao Z X, Cheng J G 2018 Acta Phys. Sin. 67 207404Google Scholar
[17] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar
[18] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528Google Scholar
[19] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001Google Scholar
[20] Troyan I A, Semenok D V, Kvashnin A G, Ivanova A G, Prakapenka V B, Greenberg E, Gavriliuk A G, Lyubutin I S, Struzhkin V V, Oganov A R 2019 arXiv: 1908.01534
[21] Kong P P, Minkov V S, Kuzovnikov M A, Besedin S P, Drozdov A P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Greenberg E, Knyazev D A, Eremets M I 2019 arXiv: 1909.10482
[22] Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A, Oganov A R 2020 Mater. Today 33 36Google Scholar
[23] Li Y, Hao J, Liu H, Li Y, Ma Y M 2014 J. Chem. Phys. 140 174712Google Scholar
[24] Liu H, Naumov, I I, Hoffmann R, Ashcroft N W, Hemley R J 2017 Proc. Natl. Acad. Sci. U.S.A. 114 6990Google Scholar
[25] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y M 2017 Phys. Rev. Lett. 119 107001Google Scholar
[26] Wigner E, Huntington H B 1935 J. Chem. Phys. 3 764Google Scholar
[27] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748Google Scholar
[28] Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar
[29] Pickard C J, Needs R J 2007 Nat. Phys. 3 473Google Scholar
[30] Zhang L J, Niu Y L, Li Q, Cui T, Wang Y, Ma Y M, He Z, Zou G T 2007 Solid State Commun. 141 610Google Scholar
[31] Cudazzo P, Profeta G, Sanna A, Floris A, Continenza A, Massidda S, Gross E K 2008 Phys. Rev. Lett. 100 257001Google Scholar
[32] Liu H, Zhu L, Cui W, Ma Y M 2012 J. Chem. Phys. 137 074501Google Scholar
[33] Liu H Y, Wang H, Ma Y M 2012 J. Phys. Chem. C 116 9221Google Scholar
[34] McMahon J M, Ceperley D M 2011 Phys. Rev. B 84 144515Google Scholar
[35] Dias R P, Silvera I F 2017 Science 355 715Google Scholar
[36] Eremets M I, Drozdov A P, Kong P P, Wang H 2019 Nat. Phys. 15 1246Google Scholar
[37] Loubeyre P, Occelli F, Dumas P 2020 Nature 577 631Google Scholar
[38] Monacelli L, Errea I, Calandra M, Mauri F 2020 Nat. Phys.
[39] Ginzburg V L 1999 Physics Uspekhi 42 353Google Scholar
[40] Wang H, Li X, Gao G Y, Li Y W, Ma Y M 2018 Wires. Comput. Mol. Sci. 8 e1330
[41] Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R, Eremets M 2020 Phys. Rep. 856 1Google Scholar
[42] Gilman J J 1971 Phys. Rev. Lett. 26 546Google Scholar
[43] Satterthwaite C B, Toepke I L 1970 Phys. Rev. Lett. 25 741Google Scholar
[44] Skoskiewicz T 1972 Phys. Status Solidi A 11 K123Google Scholar
[45] Stritzker B, Buckel W 1972 Z. Phys. 257 8
[46] Stritzker B 1974 Z. Phys. 268 261Google Scholar
[47] Welter J M, Johnen F J 1977 Z. Phys. B 27 227Google Scholar
[48] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002Google Scholar
[49] Eremets M I, Trojan I A, Medvedev S A, Tse J S, Yao Y 2008 Science 319 1506Google Scholar
[50] Kim D Y, Scheicher R H, Lebegue S, Prasongkit J, Arnaud B, Alouani M, Ahuja R 2008 Proc. Natl. Acad. Sci. U.S.A. 105 16454Google Scholar
[51] Martinez-Canales M, Oganov A R, Ma Y, Yan Y, Lyakhov A O, Bergara A 2009 Phys. Rev. Lett. 102 087005Google Scholar
[52] Degtyareva O, Proctor J E, Guillaume C L, Gregoryanz E, Hanfland M 2009 Solid State Commun. 149 1583Google Scholar
[53] Bi T, Zarifi N, Terpstra T, Zurek E 2019 Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Amsterdam: Elsevier)
[54] Chen X J, Struzhkin V V, Song Y, Goncharov A F, Ahart M, Liu Z, Mao H K, Hemley R J 2008 Proc. Natl. Acad. Sci. U.S.A. 105 20Google Scholar
[55] Gao G, Oganov A R, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y, Zou G 2008 Phys. Rev. Lett. 101 107002Google Scholar
[56] Tse J S, Yao Y, Tanaka K 2007 Phys. Rev. Lett. 98 117004Google Scholar
[57] Li Y, Gao G, Xie Y, Ma Y, Cui T, Zou G 2010 Proc. Natl. Acad. Sci. U.S.A. 107 15708Google Scholar
[58] Drozdov A P, Eremets M I, Troyan I A 2015 arXiv: 1812.01561
[59] Pepin C, Loubeyre P, Occelli F, Dumas P 2015 Proc. Natl. Acad. Sci. U.S.A. 112 7673Google Scholar
[60] Struzhkin V V, Kim D Y, Stavrou E, Muramatsu T, Mao H K, Pickard C J, Needs R J, Prakapenka V B, Goncharov A F 2016 Nat. Commun. 7 12267Google Scholar
[61] Chen W, Semenok D V, Kvashnin A G, Kruglov I A, Galasso M, Song H, Huang X, Duan D, Goncharov A F, Prakapenka V B 2020 arXiv: 2004.12294
[62] Wang H, Tse J S, Tanaka K, Iitaka T, Ma Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 6463Google Scholar
[63] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, Cui T 2014 Sci. Rep. 4 6968
[64] Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N, Ohishi Y 2016 Nat. Phys. 12 835Google Scholar
[65] Li Y W, Wang L, Liu H Y, Zhang Y W, Hao J, Pickard C J, Nelson J R, Needs R J, Li W T, Huang Y W, Errea I, Calandra M, Mauri F, Ma Y M 2016 Phys. Rev. B 93 020103(R)
[66] Bernstein N, Hellberg C S, Johannes M D, Mazin I I, Mehl M J 2015 Phys. Rev. B 91 060511(R)Google Scholar
[67] Strobel T A, Ganesh P, Somayazulu M, Kent P R, Hemley R J 2011 Phys. Rev. Lett. 107 255503Google Scholar
[68] Yuan Y, Li Y, Fang G, Liu G, Pei C, Li X, Zheng H, Yang K, Wang L 2019 Natl. Sci. Rev. 6 524Google Scholar
[69] Degtyarenko N N, Mazur E A 2016 J. Exp. Theor. Phys. 123 277Google Scholar
[70] Flores-Livas J A, Amsler M, Heil C, Sanna A, Boeri L, Profeta G, Wolverton C, Goedecker S, Gross E K U 2016 Phys. Rev. B 93 020508Google Scholar
[71] Fu Y H, Du X P, Zhang L J, Peng F, Zhang M, Pickard C J, Needs R J, Singh D J, Zheng W T, Ma Y M 2016 Chem. Mater. 28 1746Google Scholar
[72] Liu H Y, Li Y W, Gao G Y, Tse J S, Naumov I I 2016 J. Phys. Chem. C 120 3458Google Scholar
[73] Shamp A, Terpstra T, Bi T, Falls Z, Avery P, Zurek E 2016 J. Am. Chem. Soc. 138 1884Google Scholar
[74] Liu H Y, Naumov I I, Geballe Z M, Somayazulu M, Tse J S, Hemley R J 2018 Phys. Rev. B 98 100102Google Scholar
[75] Li X, Huang X L, Duan D F, Pickard C J, Zhou D, Xie H, Zhuang Q, Huang Y P, Zhou Q, Liu B B, Cui T 2019 Nat. Commun. 10 3461 7
[76] Salke N P, Esfahani M M D, Zhang Y, Kruglov I A, Zhou J, Wang Y, Greenberg E, Prakapenka V B, Liu J, Oganov A R, Lin J F 2019 Nat. Commun. 10 4453Google Scholar
[77] Zhou D, Semenok D V, Duan D, Xie H, Chen W, Huang X, Li X, Liu B, Oganov A R, Cui T 2020 Sci. Adv. 6 eaax6849Google Scholar
[78] Zhou D, Semenok D V, Xie H, Huang X, Duan D, Aperis A, Oppeneer P M, Galasso M, Kartsev A I, Kvashnin A G, Oganov A R, Cui T 2020 J. Am. Chem. Soc. 142 2803Google Scholar
[79] Ma L, Liu G, Wang Y, Zhou M, Liu H, Peng F, Wang H, Ma Y 2020 arXiv: 2002. 09900
[80] Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, Dias R P 2020 Nature 586 373Google Scholar
[81] Grockowiak A, Ahart M, Helm T, Coniglio W, Kumar R, Somayazulu M, Meng Y, Oliff M, Williams V, Ashcroft N 2020 arXiv: 2006. 03004
[82] Zurek E, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O 2009 Proc. Natl. Acad. Sci. U.S.A. 106 17640Google Scholar
[83] Sun Y, Lv J, Xie Y, Liu H, Ma Y 2019 Phys. Rev. Lett. 123 097001Google Scholar
-
图 1 超导体年表. 方形、圆形和菱形色块分别表示BCS超导体、铜氧化物超导体和铁基超导体. 黑色和蓝色标签分别标注常压超导材料和高压超导材料及合成压强
Figure 1. Timeline of superconductors. The square, circle, and rhombus color blocks respectively represent BCS superconductors, cuprate superconductors, and iron-based superconductors. Black and blue labels represent superconducting materials at atmospheric pressure and high pressure as well as the pressure value required to synthesize these superconductors.
-
[1] 赵忠贤, 陈立泉, 崔长庚, 黄玉珍, 刘锦湘, 陈赓华, 李山林, 郭树权, 何业冶 1987 科学通报 32 177Google Scholar
Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, He Y Z 1987 Chin. Sci. Bull. 32 177Google Scholar
[2] 赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠 1987 科学通报 32 412Google Scholar
Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z 1987 Chin. Sci. Bull. 32 412Google Scholar
[3] Chu C W, Gao L, Chen F, Huang Z J, Meng R L, Xue Y Y 1993 Nature 365 323Google Scholar
[4] Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260Google Scholar
[5] Ren Z A, Che G C, Dong X L, Yang J, Lu W, Yi W, Shen X L, Li Z C, Sun LL, Zhou F, Zhao Z X 2008 Europhys. Lett. 83 17002Google Scholar
[6] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar
[7] Zhang L, Wang Y, Lv J, Ma Y M 2017 Nat. Rev. Mater. 2 17005Google Scholar
[8] Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007Google Scholar
[9] Lv J, Sun Y, Liu H, Ma Y 2020 Matter Radiat. Extrem. 5 068101Google Scholar
[10] Hamlin J J 2015 Physica C 514 59Google Scholar
[11] Prakash O, Kumar A, Thamizhavel A, Ramakrishnan S 2017 Science 355 52Google Scholar
[12] Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56Google Scholar
[13] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215Google Scholar
[14] 罗会仟 2018 物理 47 676Google Scholar
Luo H Q 2018 Physics 47 676Google Scholar
[15] 靳常青 2017 科学通报 62 3947Google Scholar
Jin C Q 2017 Chin. Sci. Bull. 62 3947Google Scholar
[16] 孙建平, Shahi P, 周花雪, 倪顺利, 王少华, 雷和畅, 王铂森, 董晓莉, 赵忠贤, 程金光 2018 物理学报 67 207404Google Scholar
Sun J P, Shahi P, Zhou H X, Ni S L, Wang S H, Lei H C, Wang B S, Dong X L, Zhao Z X, Cheng J G 2018 Acta Phys. Sin. 67 207404Google Scholar
[17] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar
[18] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528Google Scholar
[19] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001Google Scholar
[20] Troyan I A, Semenok D V, Kvashnin A G, Ivanova A G, Prakapenka V B, Greenberg E, Gavriliuk A G, Lyubutin I S, Struzhkin V V, Oganov A R 2019 arXiv: 1908.01534
[21] Kong P P, Minkov V S, Kuzovnikov M A, Besedin S P, Drozdov A P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Greenberg E, Knyazev D A, Eremets M I 2019 arXiv: 1909.10482
[22] Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A, Oganov A R 2020 Mater. Today 33 36Google Scholar
[23] Li Y, Hao J, Liu H, Li Y, Ma Y M 2014 J. Chem. Phys. 140 174712Google Scholar
[24] Liu H, Naumov, I I, Hoffmann R, Ashcroft N W, Hemley R J 2017 Proc. Natl. Acad. Sci. U.S.A. 114 6990Google Scholar
[25] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y M 2017 Phys. Rev. Lett. 119 107001Google Scholar
[26] Wigner E, Huntington H B 1935 J. Chem. Phys. 3 764Google Scholar
[27] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748Google Scholar
[28] Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar
[29] Pickard C J, Needs R J 2007 Nat. Phys. 3 473Google Scholar
[30] Zhang L J, Niu Y L, Li Q, Cui T, Wang Y, Ma Y M, He Z, Zou G T 2007 Solid State Commun. 141 610Google Scholar
[31] Cudazzo P, Profeta G, Sanna A, Floris A, Continenza A, Massidda S, Gross E K 2008 Phys. Rev. Lett. 100 257001Google Scholar
[32] Liu H, Zhu L, Cui W, Ma Y M 2012 J. Chem. Phys. 137 074501Google Scholar
[33] Liu H Y, Wang H, Ma Y M 2012 J. Phys. Chem. C 116 9221Google Scholar
[34] McMahon J M, Ceperley D M 2011 Phys. Rev. B 84 144515Google Scholar
[35] Dias R P, Silvera I F 2017 Science 355 715Google Scholar
[36] Eremets M I, Drozdov A P, Kong P P, Wang H 2019 Nat. Phys. 15 1246Google Scholar
[37] Loubeyre P, Occelli F, Dumas P 2020 Nature 577 631Google Scholar
[38] Monacelli L, Errea I, Calandra M, Mauri F 2020 Nat. Phys.
[39] Ginzburg V L 1999 Physics Uspekhi 42 353Google Scholar
[40] Wang H, Li X, Gao G Y, Li Y W, Ma Y M 2018 Wires. Comput. Mol. Sci. 8 e1330
[41] Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R, Eremets M 2020 Phys. Rep. 856 1Google Scholar
[42] Gilman J J 1971 Phys. Rev. Lett. 26 546Google Scholar
[43] Satterthwaite C B, Toepke I L 1970 Phys. Rev. Lett. 25 741Google Scholar
[44] Skoskiewicz T 1972 Phys. Status Solidi A 11 K123Google Scholar
[45] Stritzker B, Buckel W 1972 Z. Phys. 257 8
[46] Stritzker B 1974 Z. Phys. 268 261Google Scholar
[47] Welter J M, Johnen F J 1977 Z. Phys. B 27 227Google Scholar
[48] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002Google Scholar
[49] Eremets M I, Trojan I A, Medvedev S A, Tse J S, Yao Y 2008 Science 319 1506Google Scholar
[50] Kim D Y, Scheicher R H, Lebegue S, Prasongkit J, Arnaud B, Alouani M, Ahuja R 2008 Proc. Natl. Acad. Sci. U.S.A. 105 16454Google Scholar
[51] Martinez-Canales M, Oganov A R, Ma Y, Yan Y, Lyakhov A O, Bergara A 2009 Phys. Rev. Lett. 102 087005Google Scholar
[52] Degtyareva O, Proctor J E, Guillaume C L, Gregoryanz E, Hanfland M 2009 Solid State Commun. 149 1583Google Scholar
[53] Bi T, Zarifi N, Terpstra T, Zurek E 2019 Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Amsterdam: Elsevier)
[54] Chen X J, Struzhkin V V, Song Y, Goncharov A F, Ahart M, Liu Z, Mao H K, Hemley R J 2008 Proc. Natl. Acad. Sci. U.S.A. 105 20Google Scholar
[55] Gao G, Oganov A R, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y, Zou G 2008 Phys. Rev. Lett. 101 107002Google Scholar
[56] Tse J S, Yao Y, Tanaka K 2007 Phys. Rev. Lett. 98 117004Google Scholar
[57] Li Y, Gao G, Xie Y, Ma Y, Cui T, Zou G 2010 Proc. Natl. Acad. Sci. U.S.A. 107 15708Google Scholar
[58] Drozdov A P, Eremets M I, Troyan I A 2015 arXiv: 1812.01561
[59] Pepin C, Loubeyre P, Occelli F, Dumas P 2015 Proc. Natl. Acad. Sci. U.S.A. 112 7673Google Scholar
[60] Struzhkin V V, Kim D Y, Stavrou E, Muramatsu T, Mao H K, Pickard C J, Needs R J, Prakapenka V B, Goncharov A F 2016 Nat. Commun. 7 12267Google Scholar
[61] Chen W, Semenok D V, Kvashnin A G, Kruglov I A, Galasso M, Song H, Huang X, Duan D, Goncharov A F, Prakapenka V B 2020 arXiv: 2004.12294
[62] Wang H, Tse J S, Tanaka K, Iitaka T, Ma Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 6463Google Scholar
[63] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, Cui T 2014 Sci. Rep. 4 6968
[64] Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N, Ohishi Y 2016 Nat. Phys. 12 835Google Scholar
[65] Li Y W, Wang L, Liu H Y, Zhang Y W, Hao J, Pickard C J, Nelson J R, Needs R J, Li W T, Huang Y W, Errea I, Calandra M, Mauri F, Ma Y M 2016 Phys. Rev. B 93 020103(R)
[66] Bernstein N, Hellberg C S, Johannes M D, Mazin I I, Mehl M J 2015 Phys. Rev. B 91 060511(R)Google Scholar
[67] Strobel T A, Ganesh P, Somayazulu M, Kent P R, Hemley R J 2011 Phys. Rev. Lett. 107 255503Google Scholar
[68] Yuan Y, Li Y, Fang G, Liu G, Pei C, Li X, Zheng H, Yang K, Wang L 2019 Natl. Sci. Rev. 6 524Google Scholar
[69] Degtyarenko N N, Mazur E A 2016 J. Exp. Theor. Phys. 123 277Google Scholar
[70] Flores-Livas J A, Amsler M, Heil C, Sanna A, Boeri L, Profeta G, Wolverton C, Goedecker S, Gross E K U 2016 Phys. Rev. B 93 020508Google Scholar
[71] Fu Y H, Du X P, Zhang L J, Peng F, Zhang M, Pickard C J, Needs R J, Singh D J, Zheng W T, Ma Y M 2016 Chem. Mater. 28 1746Google Scholar
[72] Liu H Y, Li Y W, Gao G Y, Tse J S, Naumov I I 2016 J. Phys. Chem. C 120 3458Google Scholar
[73] Shamp A, Terpstra T, Bi T, Falls Z, Avery P, Zurek E 2016 J. Am. Chem. Soc. 138 1884Google Scholar
[74] Liu H Y, Naumov I I, Geballe Z M, Somayazulu M, Tse J S, Hemley R J 2018 Phys. Rev. B 98 100102Google Scholar
[75] Li X, Huang X L, Duan D F, Pickard C J, Zhou D, Xie H, Zhuang Q, Huang Y P, Zhou Q, Liu B B, Cui T 2019 Nat. Commun. 10 3461 7
[76] Salke N P, Esfahani M M D, Zhang Y, Kruglov I A, Zhou J, Wang Y, Greenberg E, Prakapenka V B, Liu J, Oganov A R, Lin J F 2019 Nat. Commun. 10 4453Google Scholar
[77] Zhou D, Semenok D V, Duan D, Xie H, Chen W, Huang X, Li X, Liu B, Oganov A R, Cui T 2020 Sci. Adv. 6 eaax6849Google Scholar
[78] Zhou D, Semenok D V, Xie H, Huang X, Duan D, Aperis A, Oppeneer P M, Galasso M, Kartsev A I, Kvashnin A G, Oganov A R, Cui T 2020 J. Am. Chem. Soc. 142 2803Google Scholar
[79] Ma L, Liu G, Wang Y, Zhou M, Liu H, Peng F, Wang H, Ma Y 2020 arXiv: 2002. 09900
[80] Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, Dias R P 2020 Nature 586 373Google Scholar
[81] Grockowiak A, Ahart M, Helm T, Coniglio W, Kumar R, Somayazulu M, Meng Y, Oliff M, Williams V, Ashcroft N 2020 arXiv: 2006. 03004
[82] Zurek E, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O 2009 Proc. Natl. Acad. Sci. U.S.A. 106 17640Google Scholar
[83] Sun Y, Lv J, Xie Y, Liu H, Ma Y 2019 Phys. Rev. Lett. 123 097001Google Scholar
Catalog
Metrics
- Abstract views: 14372
- PDF Downloads: 905
- Cited By: 0