-
The interference between overlapping gas absorption lines often occurs in the measurement of multi-component gas mixture with using tunable diode laser absorption spectroscopy (TDLAS). This is also the main problem of the technology in some applications. For instance, in the early application of multi-component gas mixture measurement in coal mines, we found that the absorption lines of carbon monoxide (CO) and methane (CH4) seriously overlapped. The absorption signal of trace CO gas was annihilated and could not be effectively demodulated, especially in the presence of high concentration of CH4. This problem could not be solved just by accurately selecting the spectral lines due to the band absorption of CH4. Therefore, in this paper, we introduce the support vector regression (SVR) model to deal with the interference between CO and CH4 absorption lines. The spectral signals of 14 groups of mixed gases with different concentrations of CO and CH4 are used as the training sets, and the five-fold cross-validation is adopted to prevent the model from overfitting. After 15 iterations in 30 seconds, the optimal regression model of CO and CH4 can be obtained respectively. Furthermore, it is worth noting that based on the experimental data, the linear kernel function is selected to construct the two gas SVR models, and the parameters of the SVR models are optimized by the sequential minimal optimization(SMO) algorithm. With the assistance of the SVR models, the absorption spectra of the two gases can be demodulated effectively, and finally the accurate measurement results are obtained. The measurement results show that the absolute error of trace CO and CH4 concentration(volume fraction of gas) are less than 2 × 10–6 and 0.2 × 10–2 respectively. Meanwhile, the correlation coefficient between the measured values and the actual values of CO and CH4 are 0.998 and 0.9995, respectively. In addition, the dynamic stability for each of the two regression models is fully verified by the experiment of the inflation process. Consequently, this method can eliminate the interference between the overlapping spectra, and can fully meet the requirements for accurately measuring the gas mixture. We hope that the SVR model can provide an effective solution for the real-time monitoring of multi-component gas mixture, and thus greatly improving the adaptability of TDLAS technology in the future.
-
Keywords:
- tunable diode laser absorption spectroscopy (TDLAS) /
- gas mixture /
- overlapping spectral lines /
- support vector regression
[1] Zhang Z R, Pang T, Yang Y, Xia H, Cui X J, Sun P S, Wu B, Wang Y, Sigrist M W, Dong F Z 2016 Opt. Express 24 A943Google Scholar
[2] Wang F P, Chang J, Wang Q, Wei W, Qin Z G 2017 Sens. Actuators A 259 152Google Scholar
[3] Avetisov V, Bjoroey O, Wang J, Geiser P, Paulsen K G 2019 Sensors 19 5313Google Scholar
[4] Nwaboh J A, Werhahn O, Ortwein P, Schiel D, Ebert V 2013 Meas. Sci. Technol. 24 015202Google Scholar
[5] Vallon R, Soutade J, Verant J L, Meyers J, Paris S, Mohamed A 2010 Sensors 10 6081Google Scholar
[6] 夏滑, 吴边, 张志荣, 庞涛, 董凤忠, 王煜 2013 物理学报 62 214208Google Scholar
Xia H, Wu B, Zhang Z R, Pang T, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 214208Google Scholar
[7] Zhang L W, Zhang Z R, Sun P S, Pang T, Xia H, Cui X J, Guo Q, Sigrist M W, Shu C M, Shu Z F 2020 Spectrochim. Acta, Part A 239 118495Google Scholar
[8] He Q X, Dang P P, Liu Z W, Zheng C T, Wang Y D 2017 Opt. Quantum Electron. 49 115Google Scholar
[9] Kluczynski P, Gustafsson J, Lindberg A M, Axner O 2001 Spectrochim. Acta, Part B 56 1277Google Scholar
[10] Wang F, Wu Q, Huang Q X, Zhang H D, Yan J H, Cen K F 2015 Opt. Commun. 346 53Google Scholar
[11] Lin X, Yu X L, Li F, Zhang S H, Xin J G, Chang X Y 2013 Appl. Phys. B: Lasers Opt. 110 401Google Scholar
[12] Köhring M, Huang S, Jahjah M, Jiang W, Ren W, Willer U, Caneba C, Yang L, Nagrath D, Schade W, Tittel F K 2014 Appl. Phys. B 117 445Google Scholar
[13] Zhang T, Kang J, Meng D, Wang H, Mu Z, Zhou M, Zhang X, Chen C 2018 Sensors 18 4295Google Scholar
[14] 张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜 2013 物理学报 62 234204Google Scholar
Zhang Z R, Wu B, Xia H, Pang T, Wang G X, Sun P S, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 234204Google Scholar
[15] Gabrysch M, Corsi C, Pavone F S, Inguscio M 1997 Appl. Phys. B 65 75Google Scholar
[16] Cai T D, Gao G Z, Wang M R 2016 Opt. Express 24 859Google Scholar
[17] Malegori C, Marques E J N, Freitas S T d, Pimentel M F, Pasquini C, Casiraghi E 2017 Talanta 165 112Google Scholar
[18] 张志荣, 夏滑, 董凤忠, 庞涛, 吴边 2013 光学精密工程 21 2771Google Scholar
Zhang Z R, Xia H, Dong F Z, Pang T, Wu B 2013 Opt. Precis. Eng. 21 2771Google Scholar
[19] Shao L G, Fang B, Zheng F, Qiu X B, He Q S, Wei J L, Li C L, Zhao W X 2019 Spectrochim. Acta, Part A 222 117118Google Scholar
[20] Qu J, Chen H Y, Liu W Z, Zhang B, Li Z B 2015 Proceedings of the 2015 International Conference on Intelligent Systems Research and Mechatronics Engineering Zhengzhou, PRC, April 11−13, 2015 p2111
[21] Laref R, Losson E, Sava A, Adjallah K, Siadat M 2018 2018 Ieee International Conference on Industrial Technology (Icit) Lyon, France, February 19−22, 2018 p1335
[22] Reid J, Labrie D 1981 Appl. Phys. B 26 203
[23] Smola A J, Scholkopf B 2004 Stat. Comput. 14 199Google Scholar
[24] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar
-
表 1 训练数据集
Table 1. Training data set.
Group Standard gas
category and
concentrationRatio Gas category and
concentration in
multi-pass cellCO/10–6 CH4/10–2 CO/10–6 CH4/10–2 1 19.3 0 — 19.3 0 2 54.0 0 — 54.0 0 3 102.0 0 — 102.0 0 4 0 0.50 — 0 0.50 5 0 1.04 — 0 1.04 6 0 2.02 — 0 2.02 7 0 5.02 — 0 5.02 8 54.0 1.04 1∶1 27.0 0.52 9 102.0 1.04 1∶1 51.0 0.52 10 19.3 1.04 1∶1 9.6 0.52 11 19.3 0.50 1∶1 9.6 0.25 12 19.3 5.02 1∶1 9.6 2.51 13 19.3 2.02 1∶1 9.6 1.01 14 19.3 8.50 1∶1 9.6 4.25 表 2 SVR模型主要参数
Table 2. Optimal parameters of SVR model.
CO-SVRmodel CH4-SVRmodel BoxConstraint(C ) 0.3443 0.0180 KernelScale 0.0617 0.9205 ε 0.1710 65.1810 Total function evaluations 15 15 Total elapsed time in seconds 26.2545 12.5730 -
[1] Zhang Z R, Pang T, Yang Y, Xia H, Cui X J, Sun P S, Wu B, Wang Y, Sigrist M W, Dong F Z 2016 Opt. Express 24 A943Google Scholar
[2] Wang F P, Chang J, Wang Q, Wei W, Qin Z G 2017 Sens. Actuators A 259 152Google Scholar
[3] Avetisov V, Bjoroey O, Wang J, Geiser P, Paulsen K G 2019 Sensors 19 5313Google Scholar
[4] Nwaboh J A, Werhahn O, Ortwein P, Schiel D, Ebert V 2013 Meas. Sci. Technol. 24 015202Google Scholar
[5] Vallon R, Soutade J, Verant J L, Meyers J, Paris S, Mohamed A 2010 Sensors 10 6081Google Scholar
[6] 夏滑, 吴边, 张志荣, 庞涛, 董凤忠, 王煜 2013 物理学报 62 214208Google Scholar
Xia H, Wu B, Zhang Z R, Pang T, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 214208Google Scholar
[7] Zhang L W, Zhang Z R, Sun P S, Pang T, Xia H, Cui X J, Guo Q, Sigrist M W, Shu C M, Shu Z F 2020 Spectrochim. Acta, Part A 239 118495Google Scholar
[8] He Q X, Dang P P, Liu Z W, Zheng C T, Wang Y D 2017 Opt. Quantum Electron. 49 115Google Scholar
[9] Kluczynski P, Gustafsson J, Lindberg A M, Axner O 2001 Spectrochim. Acta, Part B 56 1277Google Scholar
[10] Wang F, Wu Q, Huang Q X, Zhang H D, Yan J H, Cen K F 2015 Opt. Commun. 346 53Google Scholar
[11] Lin X, Yu X L, Li F, Zhang S H, Xin J G, Chang X Y 2013 Appl. Phys. B: Lasers Opt. 110 401Google Scholar
[12] Köhring M, Huang S, Jahjah M, Jiang W, Ren W, Willer U, Caneba C, Yang L, Nagrath D, Schade W, Tittel F K 2014 Appl. Phys. B 117 445Google Scholar
[13] Zhang T, Kang J, Meng D, Wang H, Mu Z, Zhou M, Zhang X, Chen C 2018 Sensors 18 4295Google Scholar
[14] 张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜 2013 物理学报 62 234204Google Scholar
Zhang Z R, Wu B, Xia H, Pang T, Wang G X, Sun P S, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 234204Google Scholar
[15] Gabrysch M, Corsi C, Pavone F S, Inguscio M 1997 Appl. Phys. B 65 75Google Scholar
[16] Cai T D, Gao G Z, Wang M R 2016 Opt. Express 24 859Google Scholar
[17] Malegori C, Marques E J N, Freitas S T d, Pimentel M F, Pasquini C, Casiraghi E 2017 Talanta 165 112Google Scholar
[18] 张志荣, 夏滑, 董凤忠, 庞涛, 吴边 2013 光学精密工程 21 2771Google Scholar
Zhang Z R, Xia H, Dong F Z, Pang T, Wu B 2013 Opt. Precis. Eng. 21 2771Google Scholar
[19] Shao L G, Fang B, Zheng F, Qiu X B, He Q S, Wei J L, Li C L, Zhao W X 2019 Spectrochim. Acta, Part A 222 117118Google Scholar
[20] Qu J, Chen H Y, Liu W Z, Zhang B, Li Z B 2015 Proceedings of the 2015 International Conference on Intelligent Systems Research and Mechatronics Engineering Zhengzhou, PRC, April 11−13, 2015 p2111
[21] Laref R, Losson E, Sava A, Adjallah K, Siadat M 2018 2018 Ieee International Conference on Industrial Technology (Icit) Lyon, France, February 19−22, 2018 p1335
[22] Reid J, Labrie D 1981 Appl. Phys. B 26 203
[23] Smola A J, Scholkopf B 2004 Stat. Comput. 14 199Google Scholar
[24] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar
Catalog
Metrics
- Abstract views: 6815
- PDF Downloads: 180
- Cited By: 0