Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Porous silicon - calcium fluoride plasma waveguide with asymmetric Ag film and its sensitivity characteristics

Wang Fang Chen Ya-Ke Li Chuan-Qiang Ma Tao Lu Ying-Hui Liu Heng Jin Chan

Citation:

Porous silicon - calcium fluoride plasma waveguide with asymmetric Ag film and its sensitivity characteristics

Wang Fang, Chen Ya-Ke, Li Chuan-Qiang, Ma Tao, Lu Ying-Hui, Liu Heng, Jin Chan
PDF
HTML
Get Citation
  • In this paper, a porous silicon-calcium fluoride hybrid plasmonic waveguide (PS-CaF2 HPW) with an asymmetric silver film is studied. The PS-CaF2 HPW is composed of a PS strip waveguide deposited with asymmetric CaF2 and Ag thin film layers on an SiO2 substrate. In the mid-infrared (MIR) region, the mode characteristics and waveguide sensitivity of the mode in the PS-CaF2 HPW are simulated by using the finite element method (FEM). The results show that there are two fundamental modes (PM 1 and PM 2) with different polarization states in the PS-CaF2 HPW. The real part of the effective refractive index (Re(neff)), transmission loss (α), normalized effective mode field area (A), quality factor (FOM) and sensitivity (Swg) for each of the PM 1 and the PM 2 are studied and optimized. Moreover, the effect of temperature on the performances of the PS-CaF2 HPW is also analyzed. Firstly, the mode field distributions calculated by the FEM indicate that the mode field energy for each of the PM 1 and PM 2 in the PS-CaF2 HPW is mostly restricted to the PS layer and CaF2 layer. Comparing with conventional dielectric waveguides, the mode field energy of the PS-CaF2 HPW is well confined in the PS layer and CaF2 layer. The geometric parameters of the PS-CaF2 HPW are optimized by changing the geometric parameters (W1, W2, and W3). When W1 = 1500 nm, W2 = 300 nm, W3 = 70 nm, and the operating wavelength is ~3.5 μm, α and FOM are 0.019 dB/μm and 1594.99 for the PM 1, and α and FOM are 0.016 dB/μm and 1335.54 for the PM 2, respectively. Secondly, the waveguide sensitivity of the PS-CaF2 HPW is analyzed. The results show that the size of PS layer has a great influence on the waveguide sensitivity. The waveguide sensitivity decreases with the size of the PS layer increasing. In addition, the PS-CaF2 HPW has good temperature resistance. Moreover, temperature has almost no effect on Re(neff), nor α nor A nor FOM nor Swg in a temperature range from -40 K to 40 K. Finally, the fabrication tolerances of the PS-CaF2 HPW are demonstrated, and the good properties are maintained in a size tolerance range from -10 nm to 10 nm. With the advantages in propagation property and loss reduction, the PS-CaF2 HPW provides a feasible label-free biochemical sensing scheme and a method of polarization control devices.
      Corresponding author: Ma Tao, matao@htu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62075057), Key Laboratory of Interfacial Physics Technology Project, Chinese Academy of Sciences (Grant No. CASKL-IPT2003), Basic Research Project of Key Scientific Research Projects of Higher Education Institutions of Henan Province, China (Grant No. 19B510006), and the Ph. D. Program of Henan Normal University (HNU), China (Grant Nos. gd17167, 5101239170010)
    [1]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photonics 2 496Google Scholar

    [2]

    Burstein E, Chen W P, Chen Y J, Hartstein A 1974 J. Vac. Sci. Technol. 11 1004Google Scholar

    [3]

    Garcia de Abajo F J, Saenz J J 2005 Phys. Rev. Lett. 95 233901Google Scholar

    [4]

    Yang L K, Li P, Wang H C, Li Z P 2018 Chin. Phys. B. 27 094216Google Scholar

    [5]

    Zhang H F, Cao D, Tao F, Yang X H, Wang Y, Yan X N, Bai L H 2010 Chin. Phys. B. 19 027301Google Scholar

    [6]

    Gong P Q, Li X G, Zhou X, Zhang Y A, Chen N, Wang S K, Zhang S Q, Zhao Y 2021 Opt. Laser Technol. 139 106981Google Scholar

    [7]

    Smith C L, Thilsted A H, Garcia-Ortiz C E, Radko I P, Marie R, Jeppesen C, Vannahme C, Bozhevolnyi S I, Kristensen A 2014 Nano Lett. 14 1659Google Scholar

    [8]

    Kumari B, Barh A, Varshney R K, Pal B P 2016 Sens. Actuators, B 236 759Google Scholar

    [9]

    Kumari B, Varshney R K, Pal B P 2018 Sens. Actuators, B 255 3409Google Scholar

    [10]

    Mortensen N A, Bozhevolnyi S I, Alù A 2019 Nanophotonics 8 1315Google Scholar

    [11]

    Nedeljkovic M, Stankovic S, Mitchell C J, Khokhar A Z, Reynolds S A, Thomson D J, Gardes F Y, Littlejohns C G, Reed G T, Mashanovich G Z 2014 IEEE Photonics Technol. Lett. 26 1352Google Scholar

    [12]

    Shen L, Healy N, Mitchell C J, Penades J S, Nedeljkovic M, Mashanovich G Z, Peacock A C 2015 Opt. Lett. 40 268Google Scholar

    [13]

    Cheng Z Z, Chen X, Wong C Y, Xu K, Tsang H K 2012 IEEE Photonics J. 4 1510Google Scholar

    [14]

    Shankar R, Bulu I, Lončar M 2013 Appl. Phys. Lett. 102 051108Google Scholar

    [15]

    El Shamy R S, Swillam M A, Khalil D A 2019 J. Lightwave Technol. 37 4394Google Scholar

    [16]

    Alonso-Ramos C, Nedeljkovic M, Benedikovic D, Penades J S, Littlejohns C G, Khokhar A Z, Perez-Galacho D, Vivien L, Cheben P, Mashanovich G Z 2016 Opt. Lett. 41 4324Google Scholar

    [17]

    Hassan K, Leroy F, Colas-des-Francs G, Weeber J C 2014 Opt. Lett. 39 697Google Scholar

    [18]

    Dai D X, He S L 2009 Opt. Express 17 16646Google Scholar

    [19]

    Mai W J, Wang Y L, Zhang Y Y, Cui L N, Yu L 2017 Chin. Phys. B. 34 024204Google Scholar

    [20]

    王志斌, 尹少杰, 段晓宁, 邓玉萍, 董伟, 孔祥瑞 2020 中国激光 47 0313001Google Scholar

    Wang Z B, Yin S J, Duan X N, Deng Y P, Dong W, Kong X R 2020 Chin. J. Las. 47 0313001Google Scholar

    [21]

    Heo J H, Shin D H, Kim S, Jang M H, Lee M H, Seo S W, Choi S H, Im S H 2017 J. Chem. Eng. Jpn. 323 153Google Scholar

    [22]

    Hwang K W, Park S H 2015 Mater. Res. Innovations 19 S8Google Scholar

    [23]

    Chen F, Lv H, Pang Z, Zhang J, Hou Y, Gu Y, Yang H, Yang G 2019 IEEE Sens. J. 19 8441Google Scholar

    [24]

    Olenych I B, Monastyrskii L S, Aksimentyeva O I, Orovcík L, Salamakha M Y 2019 Mol. Cryst. Liq. Cryst. 673 32Google Scholar

    [25]

    孙鹏, 胡明, 刘博, 孙凤云, 许路加 2011 物理学报 60 057303Google Scholar

    Sun P, Hu M, Liu B, Sun F Y, Xun L J 2011 Acta. Phys. Sin. 60 057303Google Scholar

    [26]

    陈颖, 范卉青, 卢波 2014 物理学报 63 244207Google Scholar

    Chen Y, Fan H Q, Lu B 2014 Acta. Phys. Sin. 63 244207Google Scholar

    [27]

    Chan K C, Tso C Y, Hussain A, Chao C Y H 2019 Appl. Therm. Eng. 161 114112Google Scholar

    [28]

    Gan F L, Wang B D, Jin Z H, Xie L L, Dai Z D, Zhou T X, Jiang X 2021 Sci. Total. Environ. 768 144529Google Scholar

    [29]

    Girault P, Azuelos P, Lorrain N, Poffo L, Lemaitre J, Pirasteh P, Hardy I, Thual M, Guendouz M, Charrier J 2017 Opt. Mater. 72 596Google Scholar

    [30]

    Palik E D 1985 Academic Press 39 1

    [31]

    Ciminelli C, Campanella C M, Dell’Olio F, Campanella C E, Armenise M N 2013 Prog. Quantum Electron. 37 51Google Scholar

  • 图 1  非对称银膜的PS-CaF2混合等离子体波导示意图 (a)三维图; (b)波导截面图

    Figure 1.  Schematic diagram of Ag film coated asymmetric PS-CaF2 hybrid plasma waveguide: (a) 3D diagram; (b) cross-sectional view.

    图 2  W1 (= H1) = 1500 nm, W2 (= H2) = 300 nm和W3 (= H3) = 70时, 非对称银膜PS-CaF2混合等离子体波导中不同模式的模场分布图 (a) PM 1; (b) PM 2; 波导中心沿x方向的电场分布图 (c) PM 1; (d) PM 2; W1 (= H1) = 1500 nm和W2 (= H2) = 300 nm时, 无银膜普通波导的模场分布图 (e) TM01; (f) TE01; 波导中心沿x方向的电场分布图 (g) TM01, (h) TE01

    Figure 2.  Mode field distributions of (a) PM 1 and (b) PM 2; electric field distribution along the x axis of (c) PM 1 and (d) PM 2; mode field distributions of (e) TM01 and (f) TE01; electric field distribution along the x axis of (g) TM01 and (h) TE01 when W1 (= H1) = 1500 nm, W2 (= H2) = 300 nm and W3 (= H3) = 70.

    图 3  PM 1和PM 2的Re(neff)和α随(a)W1 (= H1), (b) W2 (= H2) 和 (c) W3 (= H3)变化的规律, W1 (= H1), W2 (= H2) 和W3 (= H3)分别取1500 nm, 300 nm和70 nm

    Figure 3.  Re(neff) and α of the PM 1 and PM 2 with different: (a) W1 (= H1) at W2 (= H2) = 300 nm and W3 (= H3) = 70 nm; (b) W2 (= H2) at W1 (= H1) = 1500 nm and W3 (= H3) = 70 nm; (c) W3 (= H3) at W2 (= H2) = 300 nm and W1 (= H1) = 1500 nm.

    图 4  PM 1和PM 2 的FOMA随(a)W1 (= H1), (b) W2 (= H2)和(c) W3 (= H3)变化的规律, W1 (= H1), W2 (= H2) 和W3 (= H3)分别取1500 nm, 300 nm和70 nm

    Figure 4.  FOM and A of the PM 1 and PM 2 with different: (a) W1 (= H1) at W2 (= H2) = 300 nm and W3 (= H3) = 70 nm; (b) W2(= H2) at W1 (= H1) = 1500 nm and W3 (= H3) = 70 nm; (c) W3 (= H3) at W2 (= H2) = 300 nm and W1 (= H1) = 1500 nm.

    图 5  在不同的nc下, PM 1和PM 2的(a) Re(neff), (b) FOMA的变化规律, W1 (= H1), W2 (= H2) 和W3 (= H3)分别取1500 nm, 300 nm和70 nm

    Figure 5.  (a) Re(neff) and (b) FOM and A of the PM 1 and PM 2 with different nc as W1 (= H1) = 1500 nm, W2 (= H2) = 300 nm and W3 (= H3) = 70 nm.

    图 6  非对称PS-CaF2混合等离子体波导的PM 1 和 PM 2 的Swg 随(a) W1 (= H1), (b) W2 (= H2)和(c) W3 (= H3) 的变化规律, W1 (= H1), W2 (= H2) 和W3 (= H3)分别取1500 nm, 300 nm和70 nm; 无Ag膜波导的PM 1 和 PM 2 的Swg 随(d) W1 (= H1)和 (e) W2 (= H2)的变化规律, W1(= H1)和W2(= H2)分别取1500 nm和300 nm

    Figure 6.  with an asymmetric Ag film of Swg of the PM 1 and PM 2 in the PS-CaF2HPW with an asymmetric Ag films with different: (a) W1 (= H1) at W2 (= H2) = 300 nm and W3 (= H3) = 70 nm; (b) W2 (= H2) at W1 (= H1) = 1500 nm and W3 (= H3) = 70 nm; (c) W3 (= H3) at W2 (= H2) = 300 nm and W1 (= H1) = 1500 nm. Without an asymmetric Ag film of Swg of the PM 1 and PM 2 in the waveguide without an asymmetric Ag film of with different (d) W1 (= H1) at W2 (= H2) = 300 nm; (b) W2 (= H2) at W1 (= H1) = 1500 nm.

    图 7  W1 (= H1) = 1500 nm, W2 (= H2) = 300 nm和W3 (= H3) = 70 nm时, 在不同的ΔT下 (a) Re(neff), (b) α, (c) FOM和A的变化规律

    Figure 7.  (a) Re(neff), (b) α, (c) FOM and A with different ΔT as W1 (= H1) = 1500 nm, W2 (= H2) = 300 nm and W3 (= H3) = 70 nm

    图 8  制造流程 (a)在SiO2衬底上外延生长PS层; (b)电子束光刻使其成型; (c)涂上抗蚀剂; (d) 在PS上外延生长CaF2层; (e) 倾斜沉积金属Ag层; (f)电子束光刻使其成型, 并清除抗蚀剂

    Figure 8.  (a) Grow PS on a SiO2 substrate; (b) pattern the resist through E-beam lithography; (c) it is coated with a resist; (d) grow CaF2 layers epitaxially on a PS layer; (e) oblique deposition of metal Ag; (f) electron beam lithography moulds it and removes the resist.

    图 9  不同的尺寸容差下, PM 1和PM 2 的FOM的变化 (ΔFOM)随(a) ΔW1和ΔH, (b) ΔW2和ΔH2; (c) ΔW3和ΔH3的变化规律, W1 (= H1), W2 (= H2) 和W3 (= H3)分别取1500 nm, 300 nm和70 nm

    Figure 9.  The changes of FOMFOM) for the PM 1 and PM 2 with different dimensional tolerances: (a) ΔW1 and ΔH1 at W2 (= H2) = 300 nm and W3 (= H3) = 70 nm; (b) ΔW2 and ΔH2 at W1 (= H1) = 1500 nm and W3 (= H3) = 70 nm; (c) ΔW3 and ΔH3 at W1 (= H1) = 1500 nm and W2 (= H2) = 300 nm.

    图 11  不同的尺寸容差, PM 1和PM 2 的SwgSwg)随(a) ΔW1和ΔH1, (b) ΔW2和ΔH2, (c) ΔW3和ΔH3的变化规律. W1(= H1), W2(= H2) 和W3(= H3)分别取1500 nm, 300 nm和70 nm

    Figure 11.  The changes of SwgSwg) for the PM 1 and PM 2 with different dimensional tolerances: (a) ΔW1 and ΔH1 at W2(= H2) = 300 nm and W3(= H3) = 70 nm; (b) ΔW2 and ΔH2 at W1(= H1) = 1500 nm and W3(= H3) = 70 nm; (c) ΔW3 and ΔH3 at W1(= H1) = 1500 nm and W2(= H2) = 300 nm.

    图 10  在不同的尺寸容差下, PM 1和PM 2 的A 的变化(ΔA)随(a) ΔW1和ΔH1, (b) ΔW2和ΔH2, (c) ΔW3和ΔH3的变化规律. W1(= H1), W2(= H2) 和W3(= H3)分别取1500 nm, 300 nm和70 nm

    Figure 10.  The changes of AA) for the PM 1 and PM 2 with different dimensional tolerances: (a) ΔW1 and ΔH1 at W2 (= H2) = 300 nm and W3 (= H3) = 70 nm; (b) ΔW2 and ΔH2 at W1 (= H1) = 1500 nm and W3 (= H3) = 70 nm; and (c) ΔW3 and ΔH3 at W1 (= H1) = 1500 nm and W2 (= H2) = 300 nm.

  • [1]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photonics 2 496Google Scholar

    [2]

    Burstein E, Chen W P, Chen Y J, Hartstein A 1974 J. Vac. Sci. Technol. 11 1004Google Scholar

    [3]

    Garcia de Abajo F J, Saenz J J 2005 Phys. Rev. Lett. 95 233901Google Scholar

    [4]

    Yang L K, Li P, Wang H C, Li Z P 2018 Chin. Phys. B. 27 094216Google Scholar

    [5]

    Zhang H F, Cao D, Tao F, Yang X H, Wang Y, Yan X N, Bai L H 2010 Chin. Phys. B. 19 027301Google Scholar

    [6]

    Gong P Q, Li X G, Zhou X, Zhang Y A, Chen N, Wang S K, Zhang S Q, Zhao Y 2021 Opt. Laser Technol. 139 106981Google Scholar

    [7]

    Smith C L, Thilsted A H, Garcia-Ortiz C E, Radko I P, Marie R, Jeppesen C, Vannahme C, Bozhevolnyi S I, Kristensen A 2014 Nano Lett. 14 1659Google Scholar

    [8]

    Kumari B, Barh A, Varshney R K, Pal B P 2016 Sens. Actuators, B 236 759Google Scholar

    [9]

    Kumari B, Varshney R K, Pal B P 2018 Sens. Actuators, B 255 3409Google Scholar

    [10]

    Mortensen N A, Bozhevolnyi S I, Alù A 2019 Nanophotonics 8 1315Google Scholar

    [11]

    Nedeljkovic M, Stankovic S, Mitchell C J, Khokhar A Z, Reynolds S A, Thomson D J, Gardes F Y, Littlejohns C G, Reed G T, Mashanovich G Z 2014 IEEE Photonics Technol. Lett. 26 1352Google Scholar

    [12]

    Shen L, Healy N, Mitchell C J, Penades J S, Nedeljkovic M, Mashanovich G Z, Peacock A C 2015 Opt. Lett. 40 268Google Scholar

    [13]

    Cheng Z Z, Chen X, Wong C Y, Xu K, Tsang H K 2012 IEEE Photonics J. 4 1510Google Scholar

    [14]

    Shankar R, Bulu I, Lončar M 2013 Appl. Phys. Lett. 102 051108Google Scholar

    [15]

    El Shamy R S, Swillam M A, Khalil D A 2019 J. Lightwave Technol. 37 4394Google Scholar

    [16]

    Alonso-Ramos C, Nedeljkovic M, Benedikovic D, Penades J S, Littlejohns C G, Khokhar A Z, Perez-Galacho D, Vivien L, Cheben P, Mashanovich G Z 2016 Opt. Lett. 41 4324Google Scholar

    [17]

    Hassan K, Leroy F, Colas-des-Francs G, Weeber J C 2014 Opt. Lett. 39 697Google Scholar

    [18]

    Dai D X, He S L 2009 Opt. Express 17 16646Google Scholar

    [19]

    Mai W J, Wang Y L, Zhang Y Y, Cui L N, Yu L 2017 Chin. Phys. B. 34 024204Google Scholar

    [20]

    王志斌, 尹少杰, 段晓宁, 邓玉萍, 董伟, 孔祥瑞 2020 中国激光 47 0313001Google Scholar

    Wang Z B, Yin S J, Duan X N, Deng Y P, Dong W, Kong X R 2020 Chin. J. Las. 47 0313001Google Scholar

    [21]

    Heo J H, Shin D H, Kim S, Jang M H, Lee M H, Seo S W, Choi S H, Im S H 2017 J. Chem. Eng. Jpn. 323 153Google Scholar

    [22]

    Hwang K W, Park S H 2015 Mater. Res. Innovations 19 S8Google Scholar

    [23]

    Chen F, Lv H, Pang Z, Zhang J, Hou Y, Gu Y, Yang H, Yang G 2019 IEEE Sens. J. 19 8441Google Scholar

    [24]

    Olenych I B, Monastyrskii L S, Aksimentyeva O I, Orovcík L, Salamakha M Y 2019 Mol. Cryst. Liq. Cryst. 673 32Google Scholar

    [25]

    孙鹏, 胡明, 刘博, 孙凤云, 许路加 2011 物理学报 60 057303Google Scholar

    Sun P, Hu M, Liu B, Sun F Y, Xun L J 2011 Acta. Phys. Sin. 60 057303Google Scholar

    [26]

    陈颖, 范卉青, 卢波 2014 物理学报 63 244207Google Scholar

    Chen Y, Fan H Q, Lu B 2014 Acta. Phys. Sin. 63 244207Google Scholar

    [27]

    Chan K C, Tso C Y, Hussain A, Chao C Y H 2019 Appl. Therm. Eng. 161 114112Google Scholar

    [28]

    Gan F L, Wang B D, Jin Z H, Xie L L, Dai Z D, Zhou T X, Jiang X 2021 Sci. Total. Environ. 768 144529Google Scholar

    [29]

    Girault P, Azuelos P, Lorrain N, Poffo L, Lemaitre J, Pirasteh P, Hardy I, Thual M, Guendouz M, Charrier J 2017 Opt. Mater. 72 596Google Scholar

    [30]

    Palik E D 1985 Academic Press 39 1

    [31]

    Ciminelli C, Campanella C M, Dell’Olio F, Campanella C E, Armenise M N 2013 Prog. Quantum Electron. 37 51Google Scholar

  • [1] Ma Tao, Ma Jia-He, Liu Heng, Tian Yong-Sheng, Liu Shao-Hui, Wang Fang. Electro-optic tunable directional coupler based on a LiNbO3/Na surface plasmonic waveguide. Acta Physica Sinica, 2022, 71(5): 054205. doi: 10.7498/aps.71.20211217
    [2] Zhang Li-Sheng. Photocatalytic properties of gold nanoarrays driven by surface plasmon. Acta Physica Sinica, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [3] Wang Fang, Zhang Long, Ma Tao, Wang Xu, Liu Yu-Fang, Ma Chun-wang. A symmetrical wedge-to-wedge THz hybrid SPPs waveguidewith low propagation loss. Acta Physica Sinica, 2020, 69(7): 074205. doi: 10.7498/aps.69.20191666
    [4] Cai Xin-Yang, Wang Xin-Wei, Zhang Yu-Ping, Wang Deng-Kui, Fang Xuan, Fang Dan, Wang Xiao-Hua, Wei Zhi-Peng. Reduction of surface plasma loss of indium tin oxide thin films by regulating substrate temperature. Acta Physica Sinica, 2018, 67(18): 180201. doi: 10.7498/aps.67.20180794
    [5] Ma Hao-Jun, Wang Guo-Lin, Luo Jie, Liu Li-Ping, Pan De-Xian, Zhang Jun, Xing Ying-Li, Tang Fei. Experimental study of electromagnetic wave transmission characteristics in S-Ka band in plasma. Acta Physica Sinica, 2018, 67(2): 025201. doi: 10.7498/aps.67.20170845
    [6] Li Dan, Liu Yong, Wang Huai-Xing, Xiao Long-Sheng, Ling Fu-Ri, Yao Jian-Quan. Gain characteristics of grapheme plasmain terahertz range. Acta Physica Sinica, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [7] Li Zhi-Quan, Zhang Ming, Peng Tao, Yue Zhong, Gu Er-Dan, Li Wen-Chao. Improvement of the local characteristics of graphene surface plasmon based on guided-mode resonance effect. Acta Physica Sinica, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [8] Qiao Wen-Tao, Gong Jian, Zhang Li-Wei, Wang Qin, Wang Guo-Dong, Lian Shu-Peng, Chen Peng-Hui, Meng Wei-Wei. Propagation properties of the graphene surface plasmon in comb-like waveguide. Acta Physica Sinica, 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [9] Sun Jie, Yang Jian-Feng, Yan Su, Yang Jing-Jing, Huang Ming. Transmission characteristics and potential applications of plasmon-assisted parallel-plated waveguide. Acta Physica Sinica, 2015, 64(7): 078402. doi: 10.7498/aps.64.078402
    [10] Chen Wen-Bo, Gong Xue-Yu, Deng Xian-Jun, Feng Jun, Huang Guo-Yu. Propagation characteristics of THz electromagnetic waves in time varying un-magnetized plasma. Acta Physica Sinica, 2014, 63(19): 194101. doi: 10.7498/aps.63.194101
    [11] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [12] Zhang Li-Wei, Zhao Yu-Huan, Wang Qin, Fang Kai, Li Wei-Bin, Qiao Wen-Tao. Resonance properties of surface plasmon in the anisotropic metamaterial waveguide. Acta Physica Sinica, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [13] Li Shan, Zhong Ming-Liang, Zhang Li-Jie, Xiong Zu-Hong, Zhang Zhong-Yue. Effects of incident polarization and electric field coupling on the surface plasmon properties of square hollow Ag nanostructures. Acta Physica Sinica, 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [14] Hu Hai-Feng, Cai Li-Kang, Bai Wen-Li, Zhang Jing, Wang Li-Na, Song Guo-Feng. Simulation research on the control of terahertz beam direction by surface plasmon. Acta Physica Sinica, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [15] Cheng Mu-Tian. Coherent controlling surface plasmon transport properties in Ag nanowire by classic optical field. Acta Physica Sinica, 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [16] Huang Qian, Wang Jing, Cao Li-Ran, Sun Jian, Zhang Xiao-Dan, Geng Wei-Dong, Xiong Shao-Zhen, Zhao Ying. Research of surface enhanced Raman scattering caused by surface plasmon of Ag nano-structures. Acta Physica Sinica, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [17] Chen Hua, Wang Li. Terahertz surface plasmon polariton couping on brass rods. Acta Physica Sinica, 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [18] Zhou Ren-Long, Chen Xiao-Shuang, Zeng Yong, Zhang Jian-Biao, Chen Hong-Bo, Wang Shao-Wei, Lu Wei, Li Hong-Jian, Xia Hui, Wang Ling-Ling. Enhanced transmission through metal-film hole arrays and the surface plasmon resonance. Acta Physica Sinica, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [19] Hua Lei, Song Guo-Feng, Guo Bao-Shan, Wang Wei-Min, Zhang Yu. Enhanced mid-infrared transmission in heavily doped n-type semiconductor film based on surface plasmons. Acta Physica Sinica, 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [20] Gao Jian-Xia, Song Guo-Feng, Guo Bao-Shan, Gan Qiao-Qiang, Chen Liang-Hui. Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser. Acta Physica Sinica, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
Metrics
  • Abstract views:  5033
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  14 April 2021
  • Accepted Date:  19 May 2021
  • Available Online:  15 August 2021
  • Published Online:  20 November 2021

/

返回文章
返回