Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Information retrieval and criticality in high-dimensional parity-time-symmetric systems

Qu Deng-Ke Fan Yi Xue Peng

Citation:

Information retrieval and criticality in high-dimensional parity-time-symmetric systems

Qu Deng-Ke, Fan Yi, Xue Peng
PDF
Get Citation
  • Recently, impressive progress has been made in the study of non-Hermitian systems with parity-time symmetry, such as observations of topological properties of physical systems and criticality at exceptional points. A crucial aspect of parity-time symmetric nonunitary dynamics is the information flow between the system and the environment. In this paper, we use the physical quantity, distinguishability between quantum states, to uniformly quantify the information flow between low-dimensional and high-dimensional parity-time symmetric non-Hermitian systems and environments. The numerical results show that the oscillation of quantum state distinguishability and complete information retrieval and can be obtained in the parity-time-unbroken phase. However, the information decays exponentially in the paritytime-broken phase. The exceptional point marks the criticality between reversibility and irreversibility of information flow, and the distinguishability between quantum states exhibits the behavior of power-law decay. Understanding these unique phenomena in nonunitary quantum dynamics provides an important perspective for the study of open quantum systems and contributes to their application in quantum information.
  • [1]

    Chen X Y, Zhang N N, He W T, et al. 2022 npj Quantum Inf. 8 22

    [2]

    Zou D, Chen T, He W, et al. 2021 Nat. Commun. 12 7201

    [3]

    Wu T, Zhang W, Zhang H, et al. 2020 Phys. Rev. Lett. 124 083901

    [4]

    Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125 226402

    [5]

    Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125 126402

    [6]

    Yang Z, Chiu C K, Fang C, Hu J 2020 Phys. Rev. Lett. 124 186402

    [7]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803

    [8]

    Pan L, Chen X, Chen Y, Zhai H 2020 Nat. Phys. 16 767

    [9]

    Zhou Z, Yu Z 2019 Phys. Rev. A 99 043412

    [10]

    Zeng Q B, Yang Y B, Xu Y 2020 Phys. Rev. B 101 020201(R)

    [11]

    Wang X R, Guo C X, Kou S P 2020 Phys. Rev. B 101 121116(R)

    [12]

    Guo C X, Wang X R, Kou S P 2020 Phys. Rev. B 101 144439

    [13]

    Zhang S, Jin L, Song Z 2022 Chin. Phys. B 31 010312

    [14]

    Guo C X, Liu C H, Zhao X M, Liu Y, Chen S 2021 Phys. Rev. Lett. 127 116801

    [15]

    Liu Y, Zhou Q, Chen S 2021 Phys. Rev. B 104 024201

    [16]

    Cui D, Li T, Li J, Yi X 2021 New J. Phys. 23 123037

    [17]

    Lin G, Zhang S, Hu Y, Niu Y, Gong J, Gong S 2019 Phys. Rev. Lett. 123 033902

    [18]

    Yang X, Cao Y, Zhai Y 2022 Chin. Phys. B 31 010308

    [19]

    Ding P, Yi W 2022 Chin. Phys. B 31 010309

    [20]

    Zhao X M, Guo C X, Kou S P, Zhuang L, Liu W M 2021 Phys. Rev. B 104 205131

    [21]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243-5246

    [22]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401

    [23]

    Bender C M 2007 Rep. Prog. Phys. 70 947-1018

    [24]

    Heiss W D 2012 J. Phys. A 45 444016

    [25]

    Makris K G, El-Ganainy R, Christodoulides D N, Musslimani Z H 2008 Phys. Rev. Lett. 100 103904

    [26]

    Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192

    [27]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature (London) 488 167

    [28]

    Schindler J, Li A, Zheng M C, Ellis F M, Kottos T 2011 Phys. Rev. A 84 040101(R)

    [29]

    Bender C M, Berntson B K, Parker D, Samuel E 2013 Am. J. Phys. 81 173

    [30]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901

    [31]

    Liu Z P, Zhang J, Özdemir S K, et al. 2016 Phys. Rev. Lett. 117 110802

    [32]

    Gao T, Estrecho E, Bliokh K Y, et al. 2015 Nature (London) 526 554

    [33]

    Graefe E M, Korsch H J, Niederle A E 2008 Phys. Rev. Lett. 101 150408

    [34]

    Chen S L, Chen G Y, Chen Y N 2014 Phys. Rev. A 90 054301

    [35]

    Yin S, Huang G Y, Lo C Y, Chen P 2017 Phys. Rev. Lett. 118 065701

    [36]

    Li J, Harter A K, Liu J, de Melo L, Joglekar Y N, Luo L 2019 Nat. Commun. 10 855

    [37]

    Xiao L, Zhan X, Bian Z, et al. 2017 Nat. Phys. 13 1117

    [38]

    Wang K, Qiu X, Xiao L, et al. 2019 Nat. Commun. 10 2293

    [39]

    Xiao L, Qu D, Wang K, et al. 2021 PRX Quantum 2 020313

    [40]

    Xiao L, Wang K, Zhan X, et al. 2019 Phys. Rev. Lett. 123 230401

    [41]

    Bian Z, Xiao L, Wang K, et al. 2020 Phys. Rev. A 102 030201(R)

    [42]

    Bian Z, Xiao L, Wang K, et al. 2020 Phys. Rev. Research 2 022039(R)

    [43]

    Xiao L, Deng T, Wang K, Wang Z, Yi W, Xue P 2021 Phys. Rev. Lett. 126 230402

    [44]

    Zurek W H 2003 Rev. Mod. Phys 75 715

    [45]

    de Vega I, Alonso D 2017 Rev. Mod. Phys 89 015001

    [46]

    Kawabata K, Ashida Y, Ueda M 2017 Phys. Rev. Lett. 119 190401

    [47]

    Misra B, Sudarshan E C G 1977 J. Math. Phys. (N.Y.) 18 756

    [48]

    Itano W M, Heinzen D J, Bollinger J J, Wineland D J 1990 Phys. Rev. A 41 2295

    [49]

    Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401

    [50]

    Viola L, Lloyd S 1998 Phys. Rev. A 58 2733

    [51]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417

    [52]

    Viola L, Lloyd S, Knill E 1999 Phys. Rev. Lett. 83 4888

    [53]

    Palma G M, Suominen K A, Ekert A K 1996 Proc. R. Soc. A 452 567

    [54]

    Zanardi P, Rasetti M 1997 Phys. Rev. Lett. 79 3306

    [55]

    Duan L M, Guo G C 1998 Phys. Rev. A 57 737

    [56]

    Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594

    [57]

    Lidar D A, Bacon D, Whaley K B 1999 Phys. Rev. Lett. 82 4556

    [58]

    Knill E, Laflamme R, Viola L 2000 Phys. Rev. Lett. 84 2525

    [59]

    Beige A, Braun D, Tregenna B, Knight P L 2000 Phys. Rev. Lett. 85 1762

    [60]

    Brody D C, Graefe E M 2012 Phys. Rev. Lett. 109 230405

    [61]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (New York: Cambridge University Press) pp403-409

    [62]

    Fuchs C A, van de Graaf J 1999 IEEE Trans. Inf. Theory 45 1216

    [63]

    Gilchrist A, Langford N K, Nielsen M A 2005 Phys. Rev. A 71 062310

    [64]

    Ruskai M B 1994 Rev. Math. Phys. 06 1147

    [65]

    Erez N, Gordon G, Nest M, Kurizki G 2008 Nature (London) 452 724

    [66]

    Wolf M M, Eisert J, Cubitt T S, Cirac J I 2008 Phys. Rev. Lett. 101 150402

    [67]

    Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401

    [68]

    Laine E M, Piilo J, Breuer H P 2010 Phys. Rev. A 81 062115

    [69]

    Rivas A, Huelga S F, Plenio M B 2010 Phys. Rev. Lett. 105 050403

    [70]

    Luo A, Fu S, Song H 2012 Phys. Rev. A 86 044101

    [71]

    Chruściński D, Maniscalco S 2014 Phys. Rev. Lett. 112 120404

    [72]

    Chruściński D, Macchiavello C, Maniscalco S 2017 Phys. Rev. Lett. 118 080404

    [73]

    Breuer H P, Laine E M, Piilo J, Vacchini B 2016 Rev. Mod. Phys. 88 021002

    [74]

    Wolf M M, Cirac J I 2008 Commun. Math. Phys. 279 147

    [75]

    Hou S C, Yi X X, Yu S X, Oh C H 2011 Phys. Rev. A 83 062115

    [76]

    Lu X M, Wang X, Sun C P 2010 Phys. Rev. A 82 042103

    [77]

    Jiang M, Luo S 2013 Phys. Rev. A 88 034101

    [78]

    Lorenzo S, Plastina F, Paternostro M 2013 Phys. Rev. A 88 020102

    [79]

    Tang J S, Wang Y T, Yu S, et al. 2016 Nat. Photon. 10 642

    [80]

    Hodaei H, Hassan A U, Wittek S, et al. 2017 Nature (London) 548 187

    [81]

    Graefe E M, Günther U, Korsch H J, Niederle A E 2008 J. Phys. A 41 255206

    [82]

    Quiroz-Juárez M A, Perez-Leija A, Tschernig K, et al. 2019 Photonics Res. 7 862

    [83]

    Caves C M 1982 Phys. Rev. D 26 1817

    [84]

    Scheel S, Szameit A 2018 Europhys. Lett. 122 34001

    [85]

    Wang K, Qiu X, Xiao L, et al. 2019 Phys. Rev. Lett. 122 020501

    [86]

    Zhan X, Xiao L, Bian Z, et al. 2017 Phys. Rev. Lett. 119 130501

    [87]

    Xiao L, Deng T S, Wang K, et al. 2020 Nat. Phys. 16 761

    [88]

    Klauck F, Teuber L, Ornigotti M, Heinrich M, Scheel S, Szameit A 2019 Nat. Photonics 13 883

    [89]

    Naghiloo M, Abbasi M, Joglekar Y N, Murch K W 2019 Nat. Phys. 19 1232

    [90]

    Zhan X, Wang K, Xiao L, et al. 2020 Phys. Rev. A 101 010302(R)

    [91]

    Xue P 2022 Chin. Phys. B 31 010311

    [92]

    Xue P, Sanders B C, Leibfried D 2009 Phys. Rev. Lett. 103 183602

    [93]

    Wang K, Xiao L, Budich J C, Yi W, Xue P 2021 Phys. Rev. Lett. 127 026404

    [94]

    Wang K, Li T, Xiao L, Han Y, Yi W, Xue P 2021 Phys. Rev. Lett. 127 270602

    [95]

    Wang X, Xiao L, Qiu X, Wang K, Yi W, Xue P 2018 Phys. Rev. A 98 013835

    [96]

    Xiao L, Qiu X, Wang K, et al. 2018 Phys. Rev. A 98 063847

  • [1] Guo Gang-Feng, Bao Xi-Xi, Tan Lei, Liu Wu-Ming. Reentrant Localized Bulk and Localized-Extended Edge in Quasiperiodic Non-Hermitian Systems. Acta Physica Sinica, doi: 10.7498/aps.74.20240933
    [2] Jiang Cui, Li Jia-Rui, Qi Di, Zhang Lian-Lian. Effect of imaginary potential energy with parity-time symmetry on band structures and edge states of T-graphene. Acta Physica Sinica, doi: 10.7498/aps.73.20240871
    [3] Zhang Hui-Jie, He Kan. Depiction of Hamiltonian PT-symmetry. Acta Physica Sinica, doi: 10.7498/aps.73.20230458
    [4] Gu Yan, Lu Zhan-Peng. Localization transition in non-Hermitian coupled chain. Acta Physica Sinica, doi: 10.7498/aps.73.20240976
    [5] Liu Jing-Hu, Xu Zhi-Hao. Random two-body dissipation induced non-Hermitian many-body localization. Acta Physica Sinica, doi: 10.7498/aps.73.20231987
    [6] Jiang Hong-Fan, Lin Ji, Hu Bei-Bei, Zhang Xiao. Nonlocal soliton in non-parity-time-symmetric coupler. Acta Physica Sinica, doi: 10.7498/aps.72.20230082
    [7] Li Jing, Ding Hai-Tao, Zhang Dan-Wei. Quantum Fisher information and parameter estimation in non-Hermitian Hamiltonians. Acta Physica Sinica, doi: 10.7498/aps.72.20230862
    [8] Li Jia-Rui, Wang Zi-An, Xu Tong-Tong, Zhang Lian-Lian, Gong Wei-Jiang. Topological properties of the one-dimensional ${\cal {PT}}$-symmetric non-Hermitian spin-orbit-coupled Su-Schrieffer-Heeger model. Acta Physica Sinica, doi: 10.7498/aps.71.20220796
    [9] Zhu Ke-Jia, Guo Zhi-Wei, Chen Hong. Experimental observation of chiral inversion at exceptional points of non-Hermitian systems. Acta Physica Sinica, doi: 10.7498/aps.71.20220842
    [10] Pan Lei. Non-Hermitian linear response theory and its applications. Acta Physica Sinica, doi: 10.7498/aps.71.20220862
    [11] Tang Yuan-Jiang, Liang Chao, Liu Yong-Chun. Research progress of parity-time symmetry and anti-symmetry. Acta Physica Sinica, doi: 10.7498/aps.71.20221323
    [12] Qu Deng-Ke, Fan Yi, Xue Peng. Information retrieval and criticality in high-dimensional parity-time-symmetric systems. Acta Physica Sinica, doi: 10.7498/aps.70.20220511
    [13] Zhang Yi. Mei’s symmetry theorems for non-migrated Birkhoffian systems on a time scale. Acta Physica Sinica, doi: 10.7498/aps.70.20210372
    [14] Cai Zi. Symmetries and effect of time dimension in non-equilibrium quantum matter. Acta Physica Sinica, doi: 10.7498/aps.70.20211741
    [15] Zhang Gao-Jian, Wang Yi-Pu. Observation of the anisotropic exceptional point in cavity magnonics system. Acta Physica Sinica, doi: 10.7498/aps.69.20191632
    [16] Li Yuan-Cheng, Wang Xiao-Ming, Xia Li-Li. Unified symmetry and conserved quantities of Nielsen equation for a holonomic mechanical system. Acta Physica Sinica, doi: 10.7498/aps.59.2935
    [17] Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming. Unified symmetry of mechanico-electrical systems with nonholonomic constraints of non-Chetaev’s type. Acta Physica Sinica, doi: 10.7498/aps.58.6732
    [18] Li Yuan-Cheng, Xia Li-Li, Zhao Wei, Hou Qi-Bao, Wang Jing, Jing Hong-Xing. Unified symmetry of mechanico-electrical systems. Acta Physica Sinica, doi: 10.7498/aps.56.5037
    [19] Ding Ning, Fang Jian-Hui, Zhang Peng-Yu, Wang Peng. Unified symmetry of Poincaré-Chetaev equations. Acta Physica Sinica, doi: 10.7498/aps.55.6197
    [20] MAO DE-QIANG, LI MING-FU, REN SHANG-YUAN. A1 SYMMETRIC DEEP LEVEL WAVEFUNCTION OF SUBSTITUTIONAL DEFECT PAIRS IN GaP. Acta Physica Sinica, doi: 10.7498/aps.33.897
Metrics
  • Abstract views:  2554
  • PDF Downloads:  39
  • Cited By: 0
Publishing process
  • Available Online:  13 April 2022

/

返回文章
返回