-
Recently, impressive progress has been made in the study of non-Hermitian systems with parity-time symmetry, such as observations of topological properties of physical systems and criticality at exceptional points. A crucial aspect of parity-time symmetric nonunitary dynamics is the information flow between the system and the environment. In this paper, we use the physical quantity, distinguishability between quantum states, to uniformly quantify the information flow between low-dimensional and high-dimensional parity-time symmetric non-Hermitian systems and environments. The numerical results show that the oscillation of quantum state distinguishability and complete information retrieval and can be obtained in the parity-time-unbroken phase. However, the information decays exponentially in the paritytime-broken phase. The exceptional point marks the criticality between reversibility and irreversibility of information flow, and the distinguishability between quantum states exhibits the behavior of power-law decay. Understanding these unique phenomena in nonunitary quantum dynamics provides an important perspective for the study of open quantum systems and contributes to their application in quantum information.
-
Keywords:
- non-Hermitian /
- parity-time symmetry /
- information retrieval /
- distinguishability
-
[1] Chen X Y, Zhang N N, He W T, et al. 2022 npj Quantum Inf. 8 22
[2] Zou D, Chen T, He W, et al. 2021 Nat. Commun. 12 7201
[3] Wu T, Zhang W, Zhang H, et al. 2020 Phys. Rev. Lett. 124 083901
[4] Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125 226402
[5] Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125 126402
[6] Yang Z, Chiu C K, Fang C, Hu J 2020 Phys. Rev. Lett. 124 186402
[7] Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803
[8] Pan L, Chen X, Chen Y, Zhai H 2020 Nat. Phys. 16 767
[9] Zhou Z, Yu Z 2019 Phys. Rev. A 99 043412
[10] Zeng Q B, Yang Y B, Xu Y 2020 Phys. Rev. B 101 020201(R)
[11] Wang X R, Guo C X, Kou S P 2020 Phys. Rev. B 101 121116(R)
[12] Guo C X, Wang X R, Kou S P 2020 Phys. Rev. B 101 144439
[13] Zhang S, Jin L, Song Z 2022 Chin. Phys. B 31 010312
[14] Guo C X, Liu C H, Zhao X M, Liu Y, Chen S 2021 Phys. Rev. Lett. 127 116801
[15] Liu Y, Zhou Q, Chen S 2021 Phys. Rev. B 104 024201
[16] Cui D, Li T, Li J, Yi X 2021 New J. Phys. 23 123037
[17] Lin G, Zhang S, Hu Y, Niu Y, Gong J, Gong S 2019 Phys. Rev. Lett. 123 033902
[18] Yang X, Cao Y, Zhai Y 2022 Chin. Phys. B 31 010308
[19] Ding P, Yi W 2022 Chin. Phys. B 31 010309
[20] Zhao X M, Guo C X, Kou S P, Zhuang L, Liu W M 2021 Phys. Rev. B 104 205131
[21] Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243-5246
[22] Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401
[23] Bender C M 2007 Rep. Prog. Phys. 70 947-1018
[24] Heiss W D 2012 J. Phys. A 45 444016
[25] Makris K G, El-Ganainy R, Christodoulides D N, Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
[26] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192
[27] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature (London) 488 167
[28] Schindler J, Li A, Zheng M C, Ellis F M, Kottos T 2011 Phys. Rev. A 84 040101(R)
[29] Bender C M, Berntson B K, Parker D, Samuel E 2013 Am. J. Phys. 81 173
[30] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[31] Liu Z P, Zhang J, Özdemir S K, et al. 2016 Phys. Rev. Lett. 117 110802
[32] Gao T, Estrecho E, Bliokh K Y, et al. 2015 Nature (London) 526 554
[33] Graefe E M, Korsch H J, Niederle A E 2008 Phys. Rev. Lett. 101 150408
[34] Chen S L, Chen G Y, Chen Y N 2014 Phys. Rev. A 90 054301
[35] Yin S, Huang G Y, Lo C Y, Chen P 2017 Phys. Rev. Lett. 118 065701
[36] Li J, Harter A K, Liu J, de Melo L, Joglekar Y N, Luo L 2019 Nat. Commun. 10 855
[37] Xiao L, Zhan X, Bian Z, et al. 2017 Nat. Phys. 13 1117
[38] Wang K, Qiu X, Xiao L, et al. 2019 Nat. Commun. 10 2293
[39] Xiao L, Qu D, Wang K, et al. 2021 PRX Quantum 2 020313
[40] Xiao L, Wang K, Zhan X, et al. 2019 Phys. Rev. Lett. 123 230401
[41] Bian Z, Xiao L, Wang K, et al. 2020 Phys. Rev. A 102 030201(R)
[42] Bian Z, Xiao L, Wang K, et al. 2020 Phys. Rev. Research 2 022039(R)
[43] Xiao L, Deng T, Wang K, Wang Z, Yi W, Xue P 2021 Phys. Rev. Lett. 126 230402
[44] Zurek W H 2003 Rev. Mod. Phys 75 715
[45] de Vega I, Alonso D 2017 Rev. Mod. Phys 89 015001
[46] Kawabata K, Ashida Y, Ueda M 2017 Phys. Rev. Lett. 119 190401
[47] Misra B, Sudarshan E C G 1977 J. Math. Phys. (N.Y.) 18 756
[48] Itano W M, Heinzen D J, Bollinger J J, Wineland D J 1990 Phys. Rev. A 41 2295
[49] Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401
[50] Viola L, Lloyd S 1998 Phys. Rev. A 58 2733
[51] Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417
[52] Viola L, Lloyd S, Knill E 1999 Phys. Rev. Lett. 83 4888
[53] Palma G M, Suominen K A, Ekert A K 1996 Proc. R. Soc. A 452 567
[54] Zanardi P, Rasetti M 1997 Phys. Rev. Lett. 79 3306
[55] Duan L M, Guo G C 1998 Phys. Rev. A 57 737
[56] Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594
[57] Lidar D A, Bacon D, Whaley K B 1999 Phys. Rev. Lett. 82 4556
[58] Knill E, Laflamme R, Viola L 2000 Phys. Rev. Lett. 84 2525
[59] Beige A, Braun D, Tregenna B, Knight P L 2000 Phys. Rev. Lett. 85 1762
[60] Brody D C, Graefe E M 2012 Phys. Rev. Lett. 109 230405
[61] Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (New York: Cambridge University Press) pp403-409
[62] Fuchs C A, van de Graaf J 1999 IEEE Trans. Inf. Theory 45 1216
[63] Gilchrist A, Langford N K, Nielsen M A 2005 Phys. Rev. A 71 062310
[64] Ruskai M B 1994 Rev. Math. Phys. 06 1147
[65] Erez N, Gordon G, Nest M, Kurizki G 2008 Nature (London) 452 724
[66] Wolf M M, Eisert J, Cubitt T S, Cirac J I 2008 Phys. Rev. Lett. 101 150402
[67] Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401
[68] Laine E M, Piilo J, Breuer H P 2010 Phys. Rev. A 81 062115
[69] Rivas A, Huelga S F, Plenio M B 2010 Phys. Rev. Lett. 105 050403
[70] Luo A, Fu S, Song H 2012 Phys. Rev. A 86 044101
[71] Chruściński D, Maniscalco S 2014 Phys. Rev. Lett. 112 120404
[72] Chruściński D, Macchiavello C, Maniscalco S 2017 Phys. Rev. Lett. 118 080404
[73] Breuer H P, Laine E M, Piilo J, Vacchini B 2016 Rev. Mod. Phys. 88 021002
[74] Wolf M M, Cirac J I 2008 Commun. Math. Phys. 279 147
[75] Hou S C, Yi X X, Yu S X, Oh C H 2011 Phys. Rev. A 83 062115
[76] Lu X M, Wang X, Sun C P 2010 Phys. Rev. A 82 042103
[77] Jiang M, Luo S 2013 Phys. Rev. A 88 034101
[78] Lorenzo S, Plastina F, Paternostro M 2013 Phys. Rev. A 88 020102
[79] Tang J S, Wang Y T, Yu S, et al. 2016 Nat. Photon. 10 642
[80] Hodaei H, Hassan A U, Wittek S, et al. 2017 Nature (London) 548 187
[81] Graefe E M, Günther U, Korsch H J, Niederle A E 2008 J. Phys. A 41 255206
[82] Quiroz-Juárez M A, Perez-Leija A, Tschernig K, et al. 2019 Photonics Res. 7 862
[83] Caves C M 1982 Phys. Rev. D 26 1817
[84] Scheel S, Szameit A 2018 Europhys. Lett. 122 34001
[85] Wang K, Qiu X, Xiao L, et al. 2019 Phys. Rev. Lett. 122 020501
[86] Zhan X, Xiao L, Bian Z, et al. 2017 Phys. Rev. Lett. 119 130501
[87] Xiao L, Deng T S, Wang K, et al. 2020 Nat. Phys. 16 761
[88] Klauck F, Teuber L, Ornigotti M, Heinrich M, Scheel S, Szameit A 2019 Nat. Photonics 13 883
[89] Naghiloo M, Abbasi M, Joglekar Y N, Murch K W 2019 Nat. Phys. 19 1232
[90] Zhan X, Wang K, Xiao L, et al. 2020 Phys. Rev. A 101 010302(R)
[91] Xue P 2022 Chin. Phys. B 31 010311
[92] Xue P, Sanders B C, Leibfried D 2009 Phys. Rev. Lett. 103 183602
[93] Wang K, Xiao L, Budich J C, Yi W, Xue P 2021 Phys. Rev. Lett. 127 026404
[94] Wang K, Li T, Xiao L, Han Y, Yi W, Xue P 2021 Phys. Rev. Lett. 127 270602
[95] Wang X, Xiao L, Qiu X, Wang K, Yi W, Xue P 2018 Phys. Rev. A 98 013835
[96] Xiao L, Qiu X, Wang K, et al. 2018 Phys. Rev. A 98 063847
Metrics
- Abstract views: 2480
- PDF Downloads: 38
- Cited By: 0