Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Giant and controllable in-plane spin angular shifts in bulk and ultrathin magnetic materials

Li Qian-Yang Yuan Shuai-Jie Yang Jin Wang Yong Ma Zu-Hai Chen Yu Zhou Xin-Xing

Citation:

Giant and controllable in-plane spin angular shifts in bulk and ultrathin magnetic materials

Li Qian-Yang, Yuan Shuai-Jie, Yang Jin, Wang Yong, Ma Zu-Hai, Chen Yu, Zhou Xin-Xing
PDF
Get Citation
  • The magneto-optical Kerr effect (MOKE) manifests itself as the rotation of the polarization plane when a linearly polarized light is reflected at the interface of magnetic materials.The MOKE reveals the magnetization of the optical properties of magnetic materials and can be characterized by the dielectric tensor containing the magneto-optical constant.Thus,exploring the MOKE requires very precise determination of the magneto-optical constant.The photonic spin Hall effect (PSHE),which corresponds to the lateral and in-plane spin-dependent splitting of the beam,can be used as an effective method to characterize the magneto-optical constant due to its advantage of being extremely sensitive to changes in the physical parameters of the material.Most of the previous studies only consider the case of a single thickness of magnetic material and a single MOKE and need to introduce complex weak measurement techniques to observe the photonic spin Hall effect.In this work,we theoretically investigate the in-plane spin angular shifts in three MOKE cases in bulk and ultrathin magnetic materials.We can effectively tune the in-plane angular displacement of different magnetic material thicknesses by changing the magnetic field direction corresponding to different MOKEs and changing the magneto-optical constants (including amplitude and phase).The research results show that in the case of bulk and ultrathin magnetic materials,the internal spin angular displacement under different MOKEs will show different trends when the magneto-optical constants change the amplitude and phase,especially in ultra-thin magnetic materials.In the lateral Kerr effect in thin materials,the photon in-plane angular displacement does not affect the change of the magneto-optical constant,but in other cases,the amplitude relative to the phase has a much larger effect on the photon in-plane angular displacement.In this regard,we propose a new method to directly determine the amplitude and phase of the magneto-optical constant using the huge in-plane spin angular displacement without considering the weak measurements and can judge different magneto-optical Kerr according to the variation of the in-plane angular displacement in the bulk and ultrathin magnetic materials.This method not only provides a new probe for measuring magneto-optical constants but also expands the study of spin photonics.
  • [1]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, and Rasing T 2007 Phys. Rev. Lett. 99(4), 047601

    [2]

    Lee O J, You L, Jang J, Subramanian V, and Salahuddin S. 2015 Appl. Phys. Lett. 107(25), 252401

    [3]

    Zhao X, Zhang X, Yang H, Cai W, Zhao Y, Wang Z, and Zhao W 2019 Nanotech. 30(33), 335707

    [4]

    Hansteen. F, Kimel. A, Kirilyuk. A, and Rasing. T 2005 Phys. Rev. Lett. 95(4), 047402

    [5]

    Kerr LL D J, 1877Philos. Mag. J. Sci. 3(19), 321-343

    [6]

    Moog E R, and Bader S D 1985 Superlattices Microstruct. 1(6), 543-552

    [7]

    Soldatov I V, and Schäfer R 2017 J. Appl. Phys. 122(15), 153906

    [8]

    Akahane K, Kimura T, and Otani Y 2004 J. Magn. Soci. JP. 28(2), 122-127

    [9]

    Kato Y K, Myers R C, Gossard A C, and Awschalom D D 2004 Sci. 306(5703), 1910-1913

    [10]

    Grunin A A, Zhdanov A G, Ezhov A A, Ganshina E A, and Fedyanin A A 2010 Appl. Phys. Lett. 97(26), 261908

    [11]

    Florczak J M, and Dahlberg E D 1990 J. appl. Phys. 67(12), 7520-7525

    [12]

    Zak J, Moog E R, Liu C, and Bader S D 1990 J. appl. phys. 68(8), 4203-4207

    [13]

    Qiu Z Q, and Bader S D 2000 Rev. Sci. Instrum. 71(3), 1243-1255

    [14]

    Ren J, Li Y, Lin Y, Qin Y, Wu R, Yang J, Xiao Y, Yang H Y, and Gong Q 2012 Appl. Phys. Lett. 101(17), 171103

    [15]

    He Y, Xie L, Qiu J, Luo L, Liu X, Li Z, Zhang Z, and Du J. 2019 J. Appl. Phys. 125(2), 023101

    [16]

    Li G, Xiang J, Zhang Y, Deng F, Panmai M, Zhuang W, Lan S, and Lei D Y 2021 Nano Lett. 21(6), 2453-2460

    [17]

    Tian J, Zuo Y, Hou M, and Jiang Y 2021 Opt. Express. 29(6), 8763-8769

    [18]

    Qiu X, Zhou X, Hu D, Du J, Gao F, Zhang Z, and Luo H 2014 Appl. Phys. Lett. 105(13), 131111

    [19]

    Li T, Wang Q, Taallah A, Zhang S, Yu T, and Zhang Z 2020 Opt. Express. 28(20), 29086-29097

    [20]

    Onoda M, Murakami S, and Nagaosa N 2004 Phys. Rev. Lett. 93(8), 083901

    [21]

    Bliokh K Y, Rodriguez-Fortuno F J, Nori F, and Zayats A V 2015 Nat. Photon. 9(12), 796-808

    [22]

    Bliokh K Y, and Nori F 2015 Phys. Rep. 592,1-38

    [23]

    Kalhor F, Thundat T, and Jacob Z 2016 Appl. Phys. Lett. 108, 061102

    [24]

    Ling X, Zhou X, Huang K, Liu Y, Qiu C, Luo H, and Wen S 2017 Rep. Prog. Phys. 80 (6), 066401

    [25]

    Ling X H, Yi X N, Zhou X X, Liu Y C, Shu W X, Luo H L, Wen S C 2014 Appl. Phys. Lett. 105 151101

    [26]

    Li Y Q, Wu Z S, Zhang Y Y, Wang M J 2014 Chin. Phys. B 23 074202

    [27]

    Shitrit N, Ulevich I. Y, Maguid E, Ozeri D, Eksler D V, Kleiner V, and Hasman E 2013 Sci.340, 724

    [28]

    Zhou X, Sheng L, and Ling X 2018 Sci. Rep. 8, 1221

    [29]

    Xie L, Qiu X, Luo L, Liu X, Li Z, Zhang Z, Du J, and Wang D 2017 Appl. Phys. Lett. 111, 191106

    [30]

    Zhou X, Xiao Z, Luo H, and Wen S 2012 Phys. Rev. A85, 043809

    [31]

    Zhou X, Ling X, Luo H, and Wen S 2012 Appl. Phys. Lett. 101, 251602

    [32]

    Bliokh K Y, Smirnova D, and Nori F 2015 Sci. 348, 1448

    [33]

    Qin Y, Li Y, Feng X, Liu Z, He H, Xiao Y, and Gong Q 2010 Opt. Express. 18, 16832-16839

    [34]

    Zhang W, Wu W, Chen S, Zhang J, Ling X, Shu W, Lou H, and Wen S 2018 Photon.Res. 6, 511-516

    [35]

    Zhou X, Zhang J, Ling X, Chen S, Luo H, and Wen S 2013 Phys. Rev. A88 (5), 053840

    [36]

    Kort-Kamp W J. M 2017 Phys. Rev. Lett. 119 (14), 147401

    [37]

    Nalitov A V, Malpuech G, Terças H, and Solnyshkov D D 2015 Phys. Rev. Lett. 114, 026803

    [38]

    Cai L, Liu M, Chen S, Liu Y, Shu W, Luo H, and Wen S 2017 Phys. Rev. A 95(1), 013809

    [39]

    Kort-Kamp W J M, Culchac F J, Capaz R B, and Pinheiro F A 2018 Phys. Rev. B 98, 195431

    [40]

    Zhou X, Xiao Z, Luo H, and Wen S 2012 Phys. Rev. A85(4), 043809

    [41]

    Zhou X, Ling X, Luo H, and Wen S 2012 Appl. Phys. Lett. 101, 251602

    [42]

    Wu Y, Sheng L, Xie L, Li S, Nie P, Chen Y, Zhou X, and Ling X 2020 Carbon. 166, 396–404

    [43]

    Chen S, Ling X, Shu W, Luo H, and Wen S 2020 Phys. Rev. Appl. 13(1), 014057

    [44]

    Yang Z J and Scheinfein M R 1993 J. appl. phys. 74(11), 6810-6823

    [45]

    Bliokh K Y, Kivshar Y S, and Nori F 2014 Phys. Rev. Lett. 113(3),033601

    [46]

    You C Y, and Shin S C 1998 J. appl. phys. 84(1), 541-546

  • [1] Xue Wen-Ming, Li Jin, He Chao-Yu, Ouyang Tao, Luo Chao-Bo, Tang Chao, Zhong Jian-Xin. Giant and tunable Rashba spin splitting and quantum spin Hall effect in H-Pb-Cl. Acta Physica Sinica, doi: 10.7498/aps.72.20221493
    [2] Liu Xiang-Lian, Li Kai-Zhou, Li Xiao-Qiong, Zhang Qiang. Coexistence of quantum spin and valley hall effect in two-dimensional dielectric photonic crystals. Acta Physica Sinica, doi: 10.7498/aps.72.20221814
    [3] Li Qian-Yang, Yuan Shuai-Jie, Yang Jin, Wang Yong, Ma Zu-Hai, Chen Yu, Zhou Xin-Xing. Giant and controllable in-plane spin angular shifts in bulk and ultrathin magnetic materials. Acta Physica Sinica, doi: 10.7498/aps.72.20221643
    [4] Mimicing the Kane-Mele type spin orbit interaction by spin-flexual phonon coupling in graphene devices. Acta Physica Sinica, doi: 10.7498/aps.70.20211815
    [5] Xie Zhi-Qiang, He Yan-Liang, Wang Pei-Pei, Su Ming-Yang, Chen Xue-Yu, Yang Bo, Liu Jun-Min, Zhou Xin-Xing, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Two-dimensional optical edge detection based on Pancharatnam-Berry phase metasurface. Acta Physica Sinica, doi: 10.7498/aps.69.20191181
    [6] Liang Tao, Li Ming. Integer quantum Hall effect in a spin-orbital coupling system. Acta Physica Sinica, doi: 10.7498/aps.68.20190037
    [7] He Dong-Mei, Peng Bin, Zhang Wan-Li, Zhang Wen-Xu. Inverse spin Hall effect in Nb doped SrTiO3. Acta Physica Sinica, doi: 10.7498/aps.68.20190118
    [8] Liu Jin-An, Tu Jia-Long, Lu Zhi-Li, Wu Bai-Wei, Hu Qi, Ma Hong-Hua, Chen Huan, Yi Xu-Nong. Manipulating longitudinal photonic spin Hall effect based on dynamic and Pancharatnam-Berry phase. Acta Physica Sinica, doi: 10.7498/aps.68.20182004
    [9] Wan Ting, Luo Zhao-Ming, Min Li, Chen Min, Xiao Lei. Enhanced photonic spin Hall effect due to controllable permittivity of alloy film. Acta Physica Sinica, doi: 10.7498/aps.67.20171824
    [10] Long Yang, Ren Jie, Jiang Hai-Tao, Sun Yong, Chen Hong. Quantum spin Hall effect in metamaterials. Acta Physica Sinica, doi: 10.7498/aps.66.227803
    [11] Chen Yu, Liu Long, Huang Zhong, Tu Lin-Lin, Zhan Peng. Great enhancement of transversal magneto-optical Kerr effect for magnetic dielectric film embedded by one-dimensional metallic grating. Acta Physica Sinica, doi: 10.7498/aps.65.147302
    [12] Han Fang-Bin, Zhang Wen-Xu, Peng Bin, Zhang Wan-Li. Angle dependent inverse spin Hall effect in NiFe/Pt thin film. Acta Physica Sinica, doi: 10.7498/aps.64.247202
    [13] Yi Xu-Nong, Li Ying, Ling Xiao-Hui, Zhang Zhi-You, Fan Dian-Yuan. Spin-orbit interaction of light in metasuface. Acta Physica Sinica, doi: 10.7498/aps.64.244202
    [14] Wang Li-Cen, Qiu Xiao-Dong, Zhang Zhi-You, Shi Rui-Ying. Photon spin splitting in magneto-optic Kerr effect. Acta Physica Sinica, doi: 10.7498/aps.64.174202
    [15] Luo Xing, Zhou Xin-Xing, Luo Hai-Lu, Wen Shuang-Chun. Cross-polarizaton characteristics in spin Hall effect of light. Acta Physica Sinica, doi: 10.7498/aps.61.194202
    [16] Jiang Hong-Liang, Zhang Rong-Jun, Zhou Hong-Ming, Yao Duan-Zheng, Xiong Gui-Guang. Parametric properties of the electron spin relaxation due to spin-orbit interaction in InAs quantum dots. Acta Physica Sinica, doi: 10.7498/aps.60.017204
    [17] Wang Zhi-Ming. Spin injection in GaAs and giant Hall effect. Acta Physica Sinica, doi: 10.7498/aps.60.077203
    [18] Ma Juan, Luo Hai-Lu, Wen Shuang-Chun. Spin Hall effect of light in a multilayer-medium structure. Acta Physica Sinica, doi: 10.7498/aps.60.094205
    [19] Zhou Wen-Yuan, Tian Jian-Guo, Zang Wei-Ping, Liu Zhi-Bo, Zhang Chun-Ping, Zhang Guang-Yin. Transient thermally induced optical nonlinearities in Kerr media. Acta Physica Sinica, doi: 10.7498/aps.53.620
    [20] Zhou Qing-Chun, Wang Jia-Fu, Xu Rong-Qing. . Acta Physica Sinica, doi: 10.7498/aps.51.1639
Metrics
  • Abstract views:  2041
  • PDF Downloads:  20
  • Cited By: 0
Publishing process
  • Available Online:  28 September 2022

/

返回文章
返回