Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of trace rare earth La on microstructure and properties of Al-7%Si-0.6%Fe alloy

Qi Zhong-Yi Wang Bo Jiang Hong-Xiang Zhang Li-Li He Jie

Citation:

Effect of trace rare earth La on microstructure and properties of Al-7%Si-0.6%Fe alloy

Qi Zhong-Yi, Wang Bo, Jiang Hong-Xiang, Zhang Li-Li, He Jie
PDF
HTML
Get Citation
  • Al-Si alloys have been widely used in electronic information, communication, and other fields because of their high specific strength, excellent castability and good thermal conductivity. In recent years, with the rapid development of 5G communication technology, electronic communication equipment is gradually developing towards high integration and lightweight. The power of related equipment is higher and higher, which puts forward higher requirements for thermal conductivity and mechanical properties of materials.Si can improve the fluidity and strength of the Al-Si alloy, but a large amount of Si will aggravate the lattice distortion and increases amount of eutectic Si. This will reduce the plasticity of the alloy, increase the electron scattering and reduce the thermal conductivity. In order to improve the mechanical properties and thermal conductivity of Al-Si alloys, chemical inoculation is generally used. Sr is usually used as modifier and Al-B serves as grain refiner. However, the simultaneous addition of Sr and B into Al-Si alloy results in “poisoning” phenomenon, it becomes impossible to refine α-Al grains and modify eutectic Si simultaneously.In recent years, rare earth La has attracted more and more attention in improving the properties of aluminum alloys. However, previous studies mainly focused on the effects of La addition, consequently, the research on the effects of combined addition of La, Sr, B on the microstructure and properties of Al-7%Si-0.6%Fe alloy is lacking. In this work, solidification experiments are performed to investigate the effects of combined addition of La, Sr, B on the microstructure and properties of Al-7%Si-0.6%Fe alloy. The results show that the addition of trace rare earth La can effectively eliminate the poisoning effect of Sr and B, and enhance the modification effect of eutectic Si. Besides, the addition of La can promote the formation of α-Al heterogeneous nucleation substrate LaB6 and La can be used as a surfactant to reduce the undercooling of α-Al nucleation, thus it refines α-Al grains. The thermal conductivity of the alloy is significantly improved when the addition of La ranges from 0.02% to 0.06%; with the further increase of La addition, LaAlSi intermetallic compounds are formed in the alloy, leading the thermal conductivity of the alloy to decrease.
      Corresponding author: Jiang Hong-Xiang, hxjiang@imr.ac.cn ; He Jie, jiehe@imr.ac.cn
    • Funds: Project supported by the Science and Technology Major Project of Guangxi Province, China (Grant No.AA23023032), the National Natural Science Foundation of China (Grant Nos. 52174380, 51974288), the Space Utilization System of China Manned Space Engineering (Grant No. KJZ-YY-NCL06), and the Science and Technology Project of Fujian Province, China (Grant Nos. 2021T3030, 2020T3037).
    [1]

    高学鹏, 李新涛, 郄喜望, 吴亚萍, 李喜孟, 李廷举 2007 物理学报 56 1188Google Scholar

    Gao X P, Li X T, Qie X W, Wu Y P, Li X M, Li T J 2007 Acta Phys. Sin. 56 1188Google Scholar

    [2]

    Dursun T, Soutis C 2014 Mater. Des. 55 862Google Scholar

    [3]

    Kim Y M, Choi S W, KimY C 2023 J. Therm. Anal. Calorim. 140 10749Google Scholar

    [4]

    Chen Z N, Kang H J, Fan G H, Li J H, Jie J C 2016 Acta Mater. 120 168Google Scholar

    [5]

    宋岩, 江鸿翔, 赵九洲, 何杰, 张丽丽, 李世欣 2021 物理学报 70 086402Google Scholar

    Song Y, Jiang H X, Zhao J Z, He J, Zhang L L, Li S X 2021 Acta Phys. Sin. 70 086402Google Scholar

    [6]

    Bolzoni L, Xia M X, Babu N H 2016 Sci. Rep. 6 39554Google Scholar

    [7]

    Ferrarini C F, Bolfarini C, Kiminami C S, Botta W J 2004 Mater. Sci. Eng. A 375 577Google Scholar

    [8]

    Dang B, Zhang X, Chen Y Z, Chen C X, Wang H T, Liu F 2016 Sci. Rep. 6 30874Google Scholar

    [9]

    Wang J Y, Wang B J, Huang L F 2017 Mater. Sci. Technol. 33 1235Google Scholar

    [10]

    王宝剑, 王建元, 吴文华, 翟薇, 王旭, 靳占奎, 魏炳波 2023 中国科学:技术科学 53 353

    Wang B J, Wang J Y, Wu W H, Zhai W, Wang X, Jin Z K, Wei B B 2023 Sci. China Technol. Sci. 53 353

    [11]

    Banerjee K, Chatterjee U K 2000 Mater. J. Mater. Sci. Technol. 16 517Google Scholar

    [12]

    Timelli G, Caliari D, Rakhmonov J 2016 J. Mater. Sci. Technol. 32 515Google Scholar

    [13]

    Birol Y 2012 Mater. Sci. Technol. 28 363Google Scholar

    [14]

    Barrirero J, Engstler M, Ghafoor N 2014 J. Alloys Compd. 611 410Google Scholar

    [15]

    Chen J K, Hung H Y, Wang C F, Tang N K 2017 Int. J. Heat Mass Transf. 105 189Google Scholar

    [16]

    Li J H, Wang X D, Ludwig T H, Tsunekawa Y, Arnberg L, Jiang J Z 2015 Acta Mater. 84 153Google Scholar

    [17]

    Jiang H X, Li S X, Zheng Q J, Zhang L L, He J, Song Y, Deng C K, Zhao J Z 2020 Mater. Des. 195 108991Google Scholar

    [18]

    Zheng Q J, Jiang H X, He J, Zhang L L, Zhao J Z 2021 Sci. China Technol. Sci. 64 2012Google Scholar

    [19]

    Jiang H X, Zheng Q J, Song Y, Li Y Q, Li S X, He J, Zhang L L, Zhao J Z 2022 Mater Charact. 185 111750Google Scholar

    [20]

    Chen Y, Pan Y, Lu T, Tao S W, Wu J L 2014 Mater. Des. 64 432Google Scholar

    [21]

    郑秋菊, 叶中飞, 江鸿翔, 张丽丽, 赵九洲 2021 金属学报 57 103

    Zheng Q J, Ye Z F, Jiang H X, Lu M, Zhang L L, Zhao J Z 2021 Acta Mater. Sin. 57 103

    [22]

    Heo U, Han D W, Kim S, Mo C B 2022 Mater. Today Commun. 32 104005Google Scholar

    [23]

    Bakhtiyarov S I, Overfelt R A, Teodorescu S G 2001 J. Mater. Sci. 36 4643Google Scholar

    [24]

    Huang L, Gunther E, Doetsch C, Mehling H 2010 Thermochim. Acta 509 93Google Scholar

    [25]

    Birol Y 2012 Mater. Sci. Technol. 28 70Google Scholar

    [26]

    Cui X L, Wu Y Y, Gao T, Liu X F 2014 J. Alloys Compd. 615 906Google Scholar

    [27]

    Lu T, Pan Y, Wu J L, Tao S W, Chen Y 2015 Int. J. Min. Met. Mater. 22 405Google Scholar

    [28]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [29]

    Lu S Z, Hellawell A 1987 Metall. Trans. 18A 1721

    [30]

    Li C L, Pan Y, Lu T, Jing L J, Pi J H 2018 Met. Mater. Int. 24 1133Google Scholar

    [31]

    Luo Q, Li X L, Li Q 2023 J. Mater. Sci. Technol. 135 97Google Scholar

    [32]

    Zhang M X, Kelly P M 2005 Scr. Mater. 52 963Google Scholar

    [33]

    Jing L J, Pan Y, Lu T, Pi J H, Gu T F 2018 T. Nonferr. Metal. Soc. 28 1687Google Scholar

    [34]

    Easton M A, StJohn D H 2001 130th TMS Annual Meeting New Orleans, La, February 11–15, 2000 p927

    [35]

    Zhou S H, Napolitano R E 2006 Acta Mater. 54 831Google Scholar

    [36]

    Zhang L L, Jiang H X, He J, Zhao J Z 2020 Scr. Mater. 179 99Google Scholar

    [37]

    Li S B, Du W B, Wang X D 2018 Acta Metall. Sin. 54 911Google Scholar

    [38]

    Hou J P, Wang Q, Zhang Z J, Tian Y Z, Wu X M, Yang H J, Li X W, Zhang Z F 2017 Mater. Des. 132 148Google Scholar

    [39]

    Mayadas A F, Shatzkes M 1970 Phys.Rev.B. 1 1382Google Scholar

    [40]

    Weng W P, Nagaumi H, Sheng X D, Fan W Z, Chen X C, Wang X N 2019 Light Metals Symposium at the 148th TMS Annual Meeting San Antonio, TX, March 10–12, 2019 p193

    [41]

    Sauvage X, Bobruk E V, Murashkin M Y 2015 Acta Mater. 98 355Google Scholar

    [42]

    Ma S M, Wang X M 2019 Mater. Sci. Eng. A 754 46Google Scholar

  • 图 1  不同Sr, B, La添加量的Al-7%Si-0.6%Fe合金中共晶硅的SEM图像 (a) 0; (b) 0.024% B; (c) 0.02% Sr; (d) 0.02% Sr和0.024% B; (e) 0.02% Sr, 0.024% B和0.02% La; (f) 0.02% Sr, 0.024% B和0.1% La

    Figure 1.  SEM images of eutectic Si in the Al-7%Si-0.6%Fe alloys with different Sr, B and La addition: (a) 0; (b) 0.024% B; (c) 0.02% Sr; (d) 0.02% Sr and 0.024% B; (e) 0.02% Sr, 0.024% B and 0.02% La; (f) 0.02% Sr, 0.024% B and 0.1% La.

    图 2  Al-7%Si-0.6%Fe-0.024%B-0.02%Sr合金的SEI和EDS元素分布 (a) SEI; (b) Al; (c) Si; (d) Sr; (e) Fe

    Figure 2.  SEI and EDS element distribution of Al-7%Si-0.6%Fe-0.024%B-0.02%Sr alloy: (a) SEI; (b) Al; (c) Si; (d) Sr; (e) Fe.

    图 4  Al-7%Si-0.6%Fe-0.024%B-0.02%Sr-0.1%La合金的SEI和EDS元素分布 (a) SEI; (b) Al; (c) Si; (d) Sr; (e) Fe; (f) La

    Figure 4.  SEI and EDS element distribution of Al-7%Si-0.6%Fe-0.024%B-0.02%Sr-0.1%La alloy: (a) SEI; (b) Al; (c) Si; (d) Sr; (e) Fe; (f) La.

    图 3  Al-7%Si-0.6%Fe-0.024%B-0.02%Sr-0.02%La合金的SEI和EDS元素分布 (a) SEI; (b) Al; (c) Si; (d) Sr; (e) Fe; (f) La

    Figure 3.  SEI and EDS element distribution of Al-7%Si-0.6%Fe-0.024%B-0.02%Sr-0.02%La alloy: (a) SEI; (b) Al; (c) Si; (d) Sr; (e) Fe; (f) La.

    图 5  添加0.1%La的Al-7%Si-0.6%Fe合金的反向散射电子图像(BEI)及EPMA元素面分布 (a) BEI; (b) Al; (c) Si; (d) Sr; (e) Fe; (f) La

    Figure 5.  Backscattered electron image (BEI) and EPMA mappings of the Al-7%Si-0.6%Fe alloy with 0.1%La addition: (a) BEI; (b) Al; (c) Si; (d) Sr; (e) Fe; (f) La.

    图 6  不同Sr, B, La添加量的Al-7%Si-0.6%Fe合金的OM图像 (a) 0; (b) 0.02% Sr; (c) 0.024% B; (d) 0.02% Sr和0.024% B; (e) 0.02% Sr, 0.024% B和0.02% La; (f) 0.02% Sr, 0.024% B和0.04% La; (g) 0.02% Sr, 0.024% B和0.06% La; (h) 0.02% Sr, 0.024% B和0.08% La; (i) 0.02% Sr, 0.024% B和0.10% La

    Figure 6.  OM images of Al-7%Si-0.6%Fe alloys with different Sr, B, La addition: (a) 0; (b) 0.02% Sr; (c) 0.024% B; (d) 0.02% Sr and 0.024% B; (e) 0.02% Sr, 0.024% B and 0.02% La; (f) 0.02% Sr, 0.024% B and 0.04% La; (g) 0.02% Sr, 0.024% B and 0.06% La; (h) 0.02% Sr, 0.024% B and 0.08% La; (i) 0.02% Sr, 0.024% B and 0.10% La.

    图 7  Al-7%Si-0.6%Fe合金平均晶粒尺寸随La添加量的变化

    Figure 7.  Average grain size of Al-7%Si-0.6%Fe alloys with different addition of La.

    图 8  不同La添加量的Al-7%Si-0.6%Fe合金的DTA冷却曲线

    Figure 8.  Differential thermal analysis (DTA) cooling curves for the Al-7%Si-0.6%Fe alloys with different addition of La.

    图 9  不同La添加量的Al-7%Si-0.6%Fe合金的热导率

    Figure 9.  Thermal conductivities of Al-7%Si-0.6%Fe alloys with different addition of La.

    图 10  不同La添加量的Al-7%Si-0.6%Fe合金的室温拉伸性能

    Figure 10.  Tensile properties of Al-7%Si-0.6%Fe alloys with different addition of La at room temperature.

    图 11  Al, SrB6和LaB6相的晶体结构示意图

    Figure 11.  Schematic diagram of crystal structure of Al, SrB6 and LaB6 phases.

    图 12  添加不同含量La时α-Al相在高角度区间的XRD图谱

    Figure 12.  XRD spectra of α-Al phase in an elevation-angle zone with different addition of La.

    图 13  添加La前后Al-7%Si-0.6%Fe-0.02Sr-0.024B合金的拉伸断口形貌 (a) 未添加La; (b) 添加0.02% La

    Figure 13.  Tensile fracture morphology of Al-7%Si-0.6%Fe alloys before and after addition of La: (a) Without La; (b) add 0.02% La.

    表 1  实验合金的化学成分(%)

    Table 1.  Chemical compositions of alloys (%).

    AlloyBSrLaSiFeAl
    Untreated00070.6余量
    0.024%B0.0240070.6余量
    0.02%Sr00.02070.6余量
    0.02%Sr+0.024%B0.0240.02070.6余量
    0.02%La0.0240.020.0270.6余量
    0.04%La0.0240.020.0470.6余量
    0.06%La0.0240.020.0670.6余量
    0.08%La0.0240.020.0870.6余量
    0.10%La0.0240.020.1070.6余量
    DownLoad: CSV

    表 2  Al-7%Si-0.6%Fe合金中α-Al、共晶Si的形核温度TN和过冷度ΔT

    Table 2.  Change of the nucleation temperature and the nucleation undercooling for the α-Al and the eutectic Si with different La addition.

    AlloyTN(α-Al)/KΔT(α-Al)/KTN(Si)/KΔT(Si)/K
    Untreated883.16846.01.1
    0.00%La883.13844.03.1
    0.04%La884.21.9843.83.3
    0.10%La885.20.9843.83.3
    DownLoad: CSV

    表 3  不同组元间的混合焓变[28]

    Table 3.  Enthalpy of mixing between various elements[28].

    ElementB-SrB-LaB-TiB-VB-Cr
    Enthalpy/
    (kJ·mol–1)
    –18–47–58–42–31
    DownLoad: CSV

    表 4  Al与SrB6, Al与LaB6之间可能的密排和近似密排方向及其错配度

    Table 4.  Interatomic spacing misfit along possible matching directions between LaB6 and Al matrix, SrB6 and Al matrix.

    [100]Al/ [100]SrB6[100]Al/ [110]SrB6[100]Al/ [111]SrB6[110]Al/ [100]SrB6[110]Al/ [110]SrB6[110]Al/ [111]SrB6[112]Al/ [100]SrB6[112]Al/ [110]SrB6[112]Al/ [111]SrB6
    3.68%46.63%79.57%26.69%3.68%26.98%15.35%19.72%46.62%
    [100]Al/ [100]LaB6[100]Al/ [110]LaB6[100]Al/ [111]LaB6[110]Al/ [100]LaB6[110]Al/ [110]LaB6[110]Al/ [111]LaB6[112]Al/ [100]LaB6[112]Al/ [110]LaB6[100]Al/ [111]LaB6
    2.67%45.20%77.82%27.40%2.67%25.74%16.17%18.55%45.19%
    DownLoad: CSV

    表 5  SrB6与Al, LaB6与Al之间可能的密排和近似密排面对及其错配度

    Table 5.  Interplanar spacing mismatch between close or nearly close packed planes in LaB6 and Al matrix, SrB6 and Al matrix.

    (200)Al/ (100)SrB6(200)Al/ (110)SrB6(200)Al/ (111)SrB6(220)Al/ (100)SrB6(220)Al/ (110)SrB6(220)Al/ (111)SrB6(111)Al/ (100)SrB6(111)Al/ (110)SrB6(111)Al/ (111)SrB6
    3.68%26.70%40.23%46.63%3.67%15.47%79.40%26.84%3.42%
    (200)Al/ (100)LaB6(200)Al/ (110)LaB6(200)Al/ (111)LaB6(220)Al/ (100)LaB6(220)Al/ (110)LaB6(220)Al/ (111)LaB6(111)Al/ (100)LaB6(111)Al/ (110)LaB6(111)Al/ (111)LaB6
    2.67%27.41%40.73%45.20%2.65%16.17%77.65%26.60%2.56%
    DownLoad: CSV
  • [1]

    高学鹏, 李新涛, 郄喜望, 吴亚萍, 李喜孟, 李廷举 2007 物理学报 56 1188Google Scholar

    Gao X P, Li X T, Qie X W, Wu Y P, Li X M, Li T J 2007 Acta Phys. Sin. 56 1188Google Scholar

    [2]

    Dursun T, Soutis C 2014 Mater. Des. 55 862Google Scholar

    [3]

    Kim Y M, Choi S W, KimY C 2023 J. Therm. Anal. Calorim. 140 10749Google Scholar

    [4]

    Chen Z N, Kang H J, Fan G H, Li J H, Jie J C 2016 Acta Mater. 120 168Google Scholar

    [5]

    宋岩, 江鸿翔, 赵九洲, 何杰, 张丽丽, 李世欣 2021 物理学报 70 086402Google Scholar

    Song Y, Jiang H X, Zhao J Z, He J, Zhang L L, Li S X 2021 Acta Phys. Sin. 70 086402Google Scholar

    [6]

    Bolzoni L, Xia M X, Babu N H 2016 Sci. Rep. 6 39554Google Scholar

    [7]

    Ferrarini C F, Bolfarini C, Kiminami C S, Botta W J 2004 Mater. Sci. Eng. A 375 577Google Scholar

    [8]

    Dang B, Zhang X, Chen Y Z, Chen C X, Wang H T, Liu F 2016 Sci. Rep. 6 30874Google Scholar

    [9]

    Wang J Y, Wang B J, Huang L F 2017 Mater. Sci. Technol. 33 1235Google Scholar

    [10]

    王宝剑, 王建元, 吴文华, 翟薇, 王旭, 靳占奎, 魏炳波 2023 中国科学:技术科学 53 353

    Wang B J, Wang J Y, Wu W H, Zhai W, Wang X, Jin Z K, Wei B B 2023 Sci. China Technol. Sci. 53 353

    [11]

    Banerjee K, Chatterjee U K 2000 Mater. J. Mater. Sci. Technol. 16 517Google Scholar

    [12]

    Timelli G, Caliari D, Rakhmonov J 2016 J. Mater. Sci. Technol. 32 515Google Scholar

    [13]

    Birol Y 2012 Mater. Sci. Technol. 28 363Google Scholar

    [14]

    Barrirero J, Engstler M, Ghafoor N 2014 J. Alloys Compd. 611 410Google Scholar

    [15]

    Chen J K, Hung H Y, Wang C F, Tang N K 2017 Int. J. Heat Mass Transf. 105 189Google Scholar

    [16]

    Li J H, Wang X D, Ludwig T H, Tsunekawa Y, Arnberg L, Jiang J Z 2015 Acta Mater. 84 153Google Scholar

    [17]

    Jiang H X, Li S X, Zheng Q J, Zhang L L, He J, Song Y, Deng C K, Zhao J Z 2020 Mater. Des. 195 108991Google Scholar

    [18]

    Zheng Q J, Jiang H X, He J, Zhang L L, Zhao J Z 2021 Sci. China Technol. Sci. 64 2012Google Scholar

    [19]

    Jiang H X, Zheng Q J, Song Y, Li Y Q, Li S X, He J, Zhang L L, Zhao J Z 2022 Mater Charact. 185 111750Google Scholar

    [20]

    Chen Y, Pan Y, Lu T, Tao S W, Wu J L 2014 Mater. Des. 64 432Google Scholar

    [21]

    郑秋菊, 叶中飞, 江鸿翔, 张丽丽, 赵九洲 2021 金属学报 57 103

    Zheng Q J, Ye Z F, Jiang H X, Lu M, Zhang L L, Zhao J Z 2021 Acta Mater. Sin. 57 103

    [22]

    Heo U, Han D W, Kim S, Mo C B 2022 Mater. Today Commun. 32 104005Google Scholar

    [23]

    Bakhtiyarov S I, Overfelt R A, Teodorescu S G 2001 J. Mater. Sci. 36 4643Google Scholar

    [24]

    Huang L, Gunther E, Doetsch C, Mehling H 2010 Thermochim. Acta 509 93Google Scholar

    [25]

    Birol Y 2012 Mater. Sci. Technol. 28 70Google Scholar

    [26]

    Cui X L, Wu Y Y, Gao T, Liu X F 2014 J. Alloys Compd. 615 906Google Scholar

    [27]

    Lu T, Pan Y, Wu J L, Tao S W, Chen Y 2015 Int. J. Min. Met. Mater. 22 405Google Scholar

    [28]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [29]

    Lu S Z, Hellawell A 1987 Metall. Trans. 18A 1721

    [30]

    Li C L, Pan Y, Lu T, Jing L J, Pi J H 2018 Met. Mater. Int. 24 1133Google Scholar

    [31]

    Luo Q, Li X L, Li Q 2023 J. Mater. Sci. Technol. 135 97Google Scholar

    [32]

    Zhang M X, Kelly P M 2005 Scr. Mater. 52 963Google Scholar

    [33]

    Jing L J, Pan Y, Lu T, Pi J H, Gu T F 2018 T. Nonferr. Metal. Soc. 28 1687Google Scholar

    [34]

    Easton M A, StJohn D H 2001 130th TMS Annual Meeting New Orleans, La, February 11–15, 2000 p927

    [35]

    Zhou S H, Napolitano R E 2006 Acta Mater. 54 831Google Scholar

    [36]

    Zhang L L, Jiang H X, He J, Zhao J Z 2020 Scr. Mater. 179 99Google Scholar

    [37]

    Li S B, Du W B, Wang X D 2018 Acta Metall. Sin. 54 911Google Scholar

    [38]

    Hou J P, Wang Q, Zhang Z J, Tian Y Z, Wu X M, Yang H J, Li X W, Zhang Z F 2017 Mater. Des. 132 148Google Scholar

    [39]

    Mayadas A F, Shatzkes M 1970 Phys.Rev.B. 1 1382Google Scholar

    [40]

    Weng W P, Nagaumi H, Sheng X D, Fan W Z, Chen X C, Wang X N 2019 Light Metals Symposium at the 148th TMS Annual Meeting San Antonio, TX, March 10–12, 2019 p193

    [41]

    Sauvage X, Bobruk E V, Murashkin M Y 2015 Acta Mater. 98 355Google Scholar

    [42]

    Ma S M, Wang X M 2019 Mater. Sci. Eng. A 754 46Google Scholar

  • [1] Zheng Cui-Hong, Yang Jian, Xie Guo-Feng, Zhou Wu-Xing, Ouyang Tao. Effect of ion irradiation on thermal conductivity of phosphorene and underlying mechanism. Acta Physica Sinica, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [2] Effect of ion irradiation on thermal conductivity of phosphorene and underlying mechanism. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211857
    [3] Tang Dao-Sheng, Hua Yu-Chao, Zhou Yan-Guang, Cao Bing-Yang. Thermal conductivity modeling of GaN films. Acta Physica Sinica, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [4] Wei Jiang-Tao, Yang Liang-Liang, Wei Lei, Qin Yuan-Hao, Song Pei-Shuai, Zhang Ming-Liang, Yang Fu-Hua, Wang Xiao-Dong. Fabrication and thermoelectric properties of Si micro/nanobelts. Acta Physica Sinica, 2021, 70(18): 187304. doi: 10.7498/aps.70.20210801
    [5] Man Tian-Nan, Zhang Lin, Xiang Zhao-Long, Wang Wen-Bin, Gao Jian-Wen, Wang En-Gang. Effects of adding Ti on microstructure and properties of Al-Bi immiscible alloy. Acta Physica Sinica, 2018, 67(3): 036101. doi: 10.7498/aps.67.20172256
    [6] Liu Ying-Guang, Zhang Shi-Bing, Han Zhong-He, Zhao Yu-Jin. Influence of grain size on the thermal conduction of nanocrystalline copper. Acta Physica Sinica, 2016, 65(10): 104401. doi: 10.7498/aps.65.104401
    [7] Gan Yu-Lin, Wang Li, Su Xue-Qiong, Xu Si-Wei, Kong Le, Shen Xiang. Thermal conductivity measurement on GeSbSe glasses:Raman scattering spectra method. Acta Physica Sinica, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [8] Li Jing, Feng Yan-Hui, Zhang Xin-Xin, Huang Cong-Liang, Yang Mu. Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering. Acta Physica Sinica, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [9] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [10] Zhang Xin, Ma Xu-Yi, Zhang Fei-Peng, Wu Peng-Xu, Lu Qing-Mei, Liu Yan-Qin, Zhang Jiu-Xing. Synthesis and thermoelectric properties of nanostructured bismuth telluride alloys. Acta Physica Sinica, 2012, 61(4): 047201. doi: 10.7498/aps.61.047201
    [11] Liu Cheng-Cheng, Cao Quan-Xi. First-principles study of the thermal transport property of Y3Al5O12. Acta Physica Sinica, 2010, 59(4): 2697-2702. doi: 10.7498/aps.59.2697
    [12] Hou Quan-Wen, Cao Bing-Yang, Guo Zeng-Yuan. Thermal conductivity of carbon nanotube: From ballistic to diffusive transport. Acta Physica Sinica, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [13] Liang Zhong-Zhu, Liang Jing-Qiu, Zheng Na, Jiang Zhi-Gang, Wang Wei-Biao, Fang Wei. Study on the compound film of diamond for absorbing radiation. Acta Physica Sinica, 2009, 58(11): 8033-8038. doi: 10.7498/aps.58.8033
    [14] Huang Feng, Di Hong-Shuang, Wang Guang-Shan. Modelling of solidification microstructure evolution of twin-roll casting magnesium strip using cellular automaton. Acta Physica Sinica, 2009, 58(13): 313-S318. doi: 10.7498/aps.58.313
    [15] Li Shi-Bin, Wu Zhi-Ming, Yuan Kai, Liao Nai-Man, Li Wei, Jiang Ya-Dong. Study on thermal conductivity of hydrogenated amorphous silicon films. Acta Physica Sinica, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [16] Pang Xue-Jun, Wang Qiang, Wang Chun-Jiang, Wang Ya-Qin, Li Ya-Bin, He Ji-Cheng. Effects of high magnetic fields on the distribution of solute elements in Al-alloys. Acta Physica Sinica, 2006, 55(10): 5129-5134. doi: 10.7498/aps.55.5129
    [17] Wang Chun-Jiang, Wang Qiang, Wang Ya-Qin, Huang Jian, He Ji-Cheng. Effects of high magnetic fields on the distribution of Si in solidified structures of Al-Si alloy. Acta Physica Sinica, 2006, 55(2): 648-654. doi: 10.7498/aps.55.648
    [18] Tong Yu-Quan, Shen Bao-Cheng, Gan Yu-Sheng, Yan Zhi-Jie. Influence of the ingot solidification microstructure on the formation kinetics of icosahedral quasicrystalline phase during the crystallization of the corresponding amorphous alloy. Acta Physica Sinica, 2005, 54(10): 4556-4561. doi: 10.7498/aps.54.4556
    [19] Yang Hong-Shun, Li Peng-Cheng, Cai Yi-Sheng, Yu Min, Li Zhi-Quan, Yang Dong-Sheng, Zhang Liang, Wang Yu-Hong, Li Ming-De, Cao Lie-Zhao, Long Yun-Zhe, Chen Zhao-Jia. . Acta Physica Sinica, 2002, 51(3): 679-684. doi: 10.7498/aps.51.679
    [20] Zhang Peng, Du Yun-Hui, Zeng Da-Ben. . Acta Physica Sinica, 2002, 51(3): 696-699. doi: 10.7498/aps.51.696
Metrics
  • Abstract views:  2249
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  08 December 2023
  • Accepted Date:  09 January 2024
  • Available Online:  23 January 2024
  • Published Online:  05 April 2024

/

返回文章
返回