Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Infrared-modulated photoluminescence spectroscopy: from wide-band coverage to micro-area and high-throughput scanning imaging

Shao Jun Chen Xi-Ren Wang Man Lu Wei

Citation:

Infrared-modulated photoluminescence spectroscopy: from wide-band coverage to micro-area and high-throughput scanning imaging

Shao Jun, Chen Xi-Ren, Wang Man, Lu Wei
PDF
Get Citation
  • Photoluminescence (PL) spectroscopy has been widely used in the ultraviolet-near-infrared spectral range for over seventy years since the very early report in 1950’s, because it not only reveals the electronic structure information of, e.g., band gap and impurity energy levels of semiconductor materials, but also serves as an efficient tool for analyzing interfacial structures, carrier lifetime, and quantum efficiency. In the infrared band beyond about 4 μm, however, the study of PL spectroscopy had been limited for decades long due to strong thermal background interference, weak PL signal and low detection ability. In this review, a conventional PL method is introduced based on a Fourier transform infrared (FTIR) spectrometer, and a continuous-scan FTIR spectrometer-based double-modulation PL (csFTIR-DMPL) method is briefly described that was proposed in 1989 for breaking through the dilemma of the infrared band, and developed continuously in the later more than 20 years, with its limitations emphasized. Then, a step-scan FTIR spectrometer-based infrared modulated PL (ssFTIR-MPL) method reported in 2006 is analyzed with highlights on its advantages of anti-interference, sensitivity and signal-to-noise ratio, followed by enumerating its effectiveness demonstration and application progress in many research groups worldwide. Further developments in recent years are then summarized of wide-band, high-throughput scanning imaging and spatial micro-resolution infrared modulated PL spectroscopic experimental systems, and the technological progresses are demonstrated of infrared-modulated PL spectroscopy from 0.56-20 μm visible-far-infrared broadband coverage to > 1k high-throughput spectra imaging and ≤2-3 μm spatial micro-resolution. Typical achievements of collaborative research are enumerated in the visible-far-infrared semiconductor materials of dilute nitrogen/dilute bismuth quantum wells, HgCdTe epitaxial films, and InAs/GaSb superlattices. The results presented demonstrate the advancement of infrared modulated PL spectroscopy and the effectiveness of the experimental systems, and foresee further application and development in the future.
  • [1]

    Fonoberov V A, Pokatilov E P, Fomin V M, Devreese J T 2004 Phys. Rev. Lett. 92 127402.

    [2]

    Wang Q Q, Muller A, Cheng M T, Zhou H J, Bianucci P, Shih C K 2005 Phys. Rev. Lett. 95 187404.

    [3]

    Jho Y D, Wang X, Kono J, Reitze D H, Wei X, Belyanin A A, Kocharovsky V V, Kocharovsky Vl V, Solomon G S 2006 Phys. Rev. Lett. 96 237401.

    [4]

    Jones R E, Yu K M, Li S X, Walukiewicz W, Ager J W, Haller E E, Lu H, Schaff W J 2006 Phys. Rev. Lett. 96 125505.

    [5]

    Shao J 2003 Acta Phys. Sin. 52 1743 (in Chinese) [邵军 2003 物理学报 52 1743.]

    [6]

    Bignazzi A, Grilli E, Radice M, Guzzi M, Castiglioni E 1996 Rev. Sci. Instrum. 67 666.

    [7]

    Barbillat J, Barny P L, Divay L, Lallier E, Grisard A, Deun R Van, Fias P 2003 Rev. Sci. Instrum. 74 4954.

    [8]

    Furstenberg R, Soares J A, White J O 2006 Rev. Sci. Instrum. 77 073101.

    [9]

    Liu M, Wang C, Zhou L 2019 Chin. Phys. B 28 037804.

    [10]

    Eich D, Schirmacher W, Hanna S, Mahlein K M, Fries P, Figgemeier H 2017 J. Electron. Mater. 46 5448.

    [11]

    Yang X, Arita M, Kako S, Arakawa Y 2011 Appl. Phys. Lett. 99 113106.

    [12]

    Deshpande S, Das A, Bhattacharya P 2013 Appl. Phys. Lett. 102 161114.

    [13]

    Basnet R, Sun C, Wu H, Nguyen H T, Rougieux F E, Macdonald D 2018 J. Appl. Phys. 124 243101.

    [14]

    Fuchs F, Lusson A, Wagner J, Koidl P 1989 Proc. SPIE 1145 323.

    [15]

    Reisinger A R, Roberts R N, Chinn S R, Myers II T H 1989 Rev. Sci. Instrum. 60 82.

    [16]

    Ullrich B, Brown G J 2012 Rev. Sci. Instrum. 83 016105.

    [17]

    Zhang Y G, Gu Y, Wang K, Fang X, Li A Z, Liu K H 2012 Rev. Sci. Instrum. 83 053106.

    [18]

    Tomm J W, Herrmann K H, Hoerstel W, Lindstaedt M, Kissel H, Fuchs F 1994 J. Cryst. Growth 138 175.

    [19]

    Lentz G, Magnea N, Mariette H, Tuffigo H, Feuillet G, Fontenille J, Ligeon E, Saminadayar K 1990 J. Cryst. Growth 101 195.

    [20]

    Fuchs F, Schneider H, Koidl P, Schwarz K, Walcher H, Triboulet R 1991 Phys. Rev. Lett. 67 1310.

    [21]

    Kasai J, Katayama Y 1995 Rev. Sci. Instrum. 66 3738.

    [22]

    Freeman J R, Brewer A, Beere H E, Ritchie D A 2011 J. Appl. Phys. 110 013103.

    [23]

    Ikezawa M, Sakuma Y, Zhang L, Sone Y, Mori T, Hamano T, Watanabe M, Sakoda K, Masumoto Y 2012 Appl. Phys. Lett. 100 042106.

    [24]

    Nguyen H T, Han Y, Ernst M, Fell A, Franklin E, Macdonald D 2015 Appl. Phys. Lett. 107 022101.

    [25]

    Shao J, Lu W, Lü X, Yue F, Li Z, Guo S, Chu J 2006 Rev. Sci. Instrum. 77 063104.

    [26]

    Shao J, Yue F, Lü X, Lu W, Huang W, Li Z, Guo S, Chu J 2006 Appl. Phys. Lett. 89 182121.

    [27]

    Shao J, Lü X, Lu W, Yue F, Huang W, Li N, Wu J, He L, Chu J 2007 Appl. Phys. Lett. 90 171101.

    [28]

    Shao J, Ma L, Lü X, Lu W, Wu J, Zha F, Wei Y, Li Z, Guo S, Yang J, He L, Chu J 2008 Appl. Phys. Lett. 93 131914.

    [29]

    Shao J, Chen L, Lü X, Lu W, He L, Guo S, Chu J 2009 Appl. Phys. Lett. 95 041908.

    [30]

    Shao J, Chen L, Lu W, Lü X, Zhu L, Guo S, He L, Chu J 2010 Appl. Phys. Lett. 96 121915.

    [31]

    Hempel M, Tomm J W, Yue F, Bettiati M A, Elsaesser T 2014 Laser Photonics Rev. 8 L59.

    [32]

    Morozov S V, Rumyantsev V V, Antonov A V, Maremyanin K V, Kudryavtsev K E, Krasilnikova L V, Mikhailov N N, Dvoretskii S A, Gavrilenko V I 2014 Appl. Phys. Lett. 104 072102.

    [33]

    Rumyantsev V V, Dubinov A A, Utochkin V V, Fadeev M A, Aleshkin V Y, Razova A A, Mikhailov N N, Dvoretsky S A, Gavrilenko V I, Morozov1 S V 2022 Appl. Phys. Lett. 121 182103.

    [34]

    Rumyantsev V V, Mazhukina K A, Utochkin V V, Kudryavtsev K E, Dubinov A A, Aleshkin V Y, Razova A A, Kuritsin D I, Fadeev M A, Antonov A V, Mikhailov N N, Dvoretsky S A, Gavrilenko V I, Teppe F, Morozov S V 2024 Appl. Phys. Lett. 124 161111.

    [35]

    Fadeev M A, Rumyantsev V V, Kadykov A M, Dubinov A A, Antonov A V, Kudryavtsev K E, Dvoretskii S A, Mikhailov N N, Gavrilenko V I, Morozov S V 2018 Opt. Express 26 12755.

    [36]

    Galeeva A V, Egorova S G, Chernichkin V I, Tamm M E, Yashina L V, Rumyantsev V V, Morozov S V, Plank H, Danilov S N, Ryabova L I, Khokhlov D R 2016 Semicond. Sci. Technol. 31 095010.

    [37]

    Motyka M, Sek G, Misiewicz J, Bauer A, Dallner M, Hofling S, Forchel A 2009 Appl. Phys. Express 2 126505.

    [38]

    Smołka T, Motyka M, Romanov V V, Moiseev K D 2022 Materials 15 1419.

    [39]

    Majkowycz K, Murawski K, Kopytko M 2024 Infrared Phy. Technol, 137 105126.

    [40]

    Arad-Vosk N, Beach R, Ron A, Templeman T, Golan Y, Sarusi G, Sa'ar A 2018 Nanotechnol. 29 115202.

    [41]

    Jang M, Litwin P M, Yoo S, McDonnell S J, Dhar N K, Gupta M C 2019 J. Appl. Phys. 126 105701.

    [42]

    Chen C, Chen F, Chen X, Deng B, Eng B, Jung D, Guo Q, Yuan S, Watanabe K, Taniguchi T, Lee M L, Xia F 2019 Nano Lett. 19 1488.

    [43]

    Chen C, Lu X, Deng B, Chen X, Guo Q, Li C, Ma C, Yuan S, Sung E, Watanabe K, Taniguchi T, Yang L, Xia F 2020 Sci. Adv. 6 eaay6134.

    [44]

    Zhu L, Shao J, Lü X, Guo S, Chu J 2011 J. Appl. Phys. 109 013509.

    [45]

    Zhu L, Song Y, Qi Z, Wang S, Zhu L, Chen X, Zha F, Guo S, Shao J 2016 J. Lumin. 169 132.

    [46]

    Shao J, Qi Z, Zhao H, Zhu L, Song Y, Chen X, Zha F X, Guo S, Wang S M 2015 J. Appl. Phys. 118 165305.

    [47]

    Chen X, Song Y, Zhu L, Wang S M, Lu W, Guo S, Shao J 2013 J. Appl. Phys. 113 153505.

    [48]

    Dou C, Chen X, Chen Q, Song Y, Ma N, Zhu L, Tan C S, Han L, Yu D, Wang S, Shao J 2022 Phys. Status Solidi B 259 2100418.

    [49]

    Yan B, Chen X, Zhu L, Pan W, Wang L, Yue L, Zhang X, Han L, Liu F, Wang S, Shao J 2019 Appl. Phys. Lett. 114 052104.

    [50]

    Chen X, Wu X, Yue L, Zhu L, Pan W, Qi Z, Wang S, Shao J 2017 Appl. Phys. Lett. 110 051903.

    [51]

    Chen X, Zhao H, Wu X, Wang L, Zhu L, Song Y, Wang S, Shao J 2019 Phys. Status Solidi B 256 1800694.

    [52]

    Zhu L, Shao J, Zhu L, Chen X, Qi Z, Lin T, Bai W, Tang X, Chu J 2015 J. Appl. Phys. 118 045707.

    [53]

    Zhu L, Shao J, Chen X, Li Y, Zhu L, Qi Z, Lin T, Bai W, Tang X, Chu J 2016 Phys. Rev. B 94 155201.

    [54]

    Chen X, Zhuang Q, Alradhi H, Jin Z M, Zhu L, Chen X, Shao J 2017 Nano Lett. 17 1545.

    [55]

    Chen X, Zhou Y, Zhu L, Qi Z, Xu Q, Xu Z, Guo S, Chen J, He L, Shao J 2014 Jpn. J. Appl. Phys. 53 082201.

    [56]

    Chen X, Xu Z, Zhou Y, Zhu L, Chen J, Shao J 2020 Appl. Phys. Lett. 117 081104.

    [57]

    Chen X, Xing J, Zhu L, Zha F X, Niu Z, Guo S, Shao J 2016 J. Appl. Phys. 119 175301.

    [58]

    Zhang X, Shao J, Chen L, Lu X, Guo S, He L, Chu J 2011 J. Appl. Phys. 110 043503.

    [59]

    Shao J, Lu W, Tsen G K O, Guo S, Dell J M 2012 J. Appl. Phys. 112 063512.

    [60]

    Zhu L, Liu S, Shao J, Chen X, Liu F, Hu Z, Chu J 2023 Chin. Phys. Lett. 40 077503.

    [61]

    Zha F, Shao J, Jiang J, Yang W Y 2007 Appl. Phys. Lett. 90 201112

    [62]

    Zhang B, Cai C, Jin S, Ye Z, Wu H, Qi Z 2014 Appl. Phys. Lett. 105 022109.

    [63]

    Deng Z, Chen B, Chen X, Shao J, Gong Q, Liu H, Wu J 2018 Infrared Phys. Technol. 90 115.

    [64]

    Zhuang Q D, Alradhi H, Jin Z M, Chen X R, Shao J, Chen X, Sanchez A M, Cao Y C, Liu J Y, Yates P, Durose K, Jin C J 2017 Nanotechnol. 28 105710.

    [65]

    Huang J, Ma W, Wei Y, Zhang Y, Cui K, Cao Y, Guo X, Shao J 2012 IEEE J. Quant. Electron. 48 1322.

    [66]

    Xing J, Zhang Y, Liao Y, Wang J, Xiang W, Hao H, Xu Y, Niu Z 2014 J. Appl. Phys. 116 123107.

    [67]

    Pan W, Zhang L, Zhu L, Li Y, Chen X, Wu X, Zhang F, Shao J, Wang S 2016 J. Appl. Phys. 120 105702.

    [68]

    Chen Q, Zhang L, Song Y, Chen X, Koelling S, Zhang Z, Li Y, Koenraad P M, Shao J, Tan C S, Wang S, Gong Q 2021 ACS Appl. Nano Mater. 4 897.

    [69]

    Xu Z, Chen J, Wang F, Zhou Y, Jin C, He L 2014 J. Cryst. Growth 386 220.

    [70]

    Furstenberg R, White J O, Dinan J H, Olson G L 2004 J. Electron. Mater. 33 714.

    [71]

    Dyksik M, Motyka M, Sęk G, Misiewicz J, Dallner M, Weih R, Kam M, Höfling S 2015 Nanoscale Res. Lett. 10 402.

    [72]

    Pepper B, Soibel A, Ting D, Hill C, Khoshakhlagh A, Fisher A, Keo S, Gunapala S 2019 Infrared Phys. Technol. 99 64

    [73]

    Kwan D C M, Kesaria M, Anyebe E A, Alshahrani D O, Delmas M, Liang B L, Huffaker D L 2021 Appl. Phys. Lett. 118 203102.

    [74]

    Chen X, Zhu L, Shao J 2019 Rev. Sci. Instrum. 90 093106.

    [75]

    Chen X, Zhu L, Zhang Y, Zhang F, Wang S, Shao J 2021 Phys. Rev. Appl. 15 044007.

    [76]

    Chen X, Wang M, Zhu L, Xie H, Chen L, Shao J 2023 Appl. Phys. Lett. 123 151105.

    [77]

    Shi Z, Yan D, Zhang Y, Zhang F, Chen Y, Gu C, Chen X, Shao J, Wang S, Shen X 2023 J. Alloys Compounds 947 169410.

    [78]

    Chen X and Shao J 2024 Microscopic mapping of infrared modulated photoluminescence spectroscopy with a spatial resolution of approximately 2 μm, to be published.

  • [1] Shao Jun, Chen Xi-Ren, Wang Man, Lu Wei. Infrared-modulated photoluminescence spectroscopy: From wide-band coverage to micro-area and high-throughput scanning imaging. Acta Physica Sinica, doi: 10.7498/aps.74.20241491
    [2] Liang Ai-Hua, Wang Xu-Sheng, Li Guo-Rong, Zheng Liao-Ying, Jiang Xiang-Ping, Hu Rui. Properties of Photoluminescence and mechanoluminescence of KxNa1–xNbO3:Pr3+ ferroelectric. Acta Physica Sinica, doi: 10.7498/aps.71.20220501
    [3] Zhang Dong, Lou Wen-Kai, Chang Kai. Theoretical progress of polarized interfaces in semiconductors. Acta Physica Sinica, doi: 10.7498/aps.68.20191239
    [4] Wang Jian, Xie Zi-Li, Zhang Rong, Zhang Yun, Liu Bin, Chen Peng, Han Ping. Study on the photoluminescence properties of InN films. Acta Physica Sinica, doi: 10.7498/aps.62.117802
    [5] Zhang Hong-Chen, Liu Hai, Qiao Wen-Qiang, Li Xing-Ji, He Shi-Yu, V. V. Abraimof. Study of the proton irradiation damage on Capsule type polarization-maintaining optical fibers made in China. Acta Physica Sinica, doi: 10.7498/aps.61.034213
    [6] Liang Zhi-Peng, Dong Zheng-Chao. Shot noise in the semiconductor/ferromagnetic d-wave superconductor tunnel junction. Acta Physica Sinica, doi: 10.7498/aps.59.1288
    [7] Chen Xiang-Lei, Zhang Jie, Du Huai-Jiang, Zhou Xian-Yi, Ye Bang-Jiao. Calculation of positron lifetime of compound semiconductors. Acta Physica Sinica, doi: 10.7498/aps.59.603
    [8] Gao Li, Zhang Jian-Min. Photoluminescence of diluted Mg doped ZnO thin films and band-gap change mechanisms. Acta Physica Sinica, doi: 10.7498/aps.59.1263
    [9] Li Su-Mei, Song Shu-Mei, Lü Ying-Bo, Wang Ai-Fang, Wu Ai-Ling, Zheng Wei-Min. Photoluminescence study of quantum confined acceptors. Acta Physica Sinica, doi: 10.7498/aps.58.4936
    [10] Zheng Li-Ren, Huang Bai-Biao, Wei Ji-Yong. Preparation of SiOx nanowires in different atmosphere, their morphology, PL and FTIR properties. Acta Physica Sinica, doi: 10.7498/aps.58.2306
    [11] Zhao Wen-Bin, Zhang Guan-Jun, Yan Zhang. Investigation on surface damage phenomena induced by flashover across semiconductor. Acta Physica Sinica, doi: 10.7498/aps.57.5130
    [12] Miao Jing-Wei, Wang Pei-Lu, Zhu Zhou-Sen, Yuan Xue-Dong, Wang Hu, Yang Chao-Wen, Shi Mian-Gong, Miao Lei, Sun Wei-Li, Zhang Jing, Liao Xue-Hua. Photoluminescence spectrum of monocrystalline Si implanted by nitrogen cluster ions. Acta Physica Sinica, doi: 10.7498/aps.57.2174
    [13] Tang Bin, Deng Hong, Shui Zheng-Wei, Wei Min, Chen Jin-Ju, Hao Xin. Room-temperature optical properties of Al-doped ZnO nanowires array. Acta Physica Sinica, doi: 10.7498/aps.56.5176
    [14] Wang Ying-Long, Lu Li-Fang, Yan Chang-Yu, Chu Li-Zhi, Zhou Yang, Fu Guang-Sheng, Peng Ying-Cai. The laser ablated deposition of Si nanocrystalline film with narrow photoluminescence peak. Acta Physica Sinica, doi: 10.7498/aps.54.5738
    [15] Xu Bo, Yu Qing-Xuan, Wu Qi-Hong, Liao Yuan, Wang Guan-Zhong, Fang Rong-Chuan. Effects of strain and Mg-dopant on the photoluminescencespectra in p-type GaN. Acta Physica Sinica, doi: 10.7498/aps.53.204
    [16] Huang Kai, Wang Si-Hui, Shi Yi, Qin Guo-Yi, Zhang Rong, Zheng You-Dou. Effect of inner electric field on the photoluminescence spectrum of nanosilicon. Acta Physica Sinica, doi: 10.7498/aps.53.1236
    [17] Zhu Jian-Min, Shen Wen-Zhong. Step scan time resolved spectroscopy and its application to photoconductivity of Si solar cells*. Acta Physica Sinica, doi: 10.7498/aps.53.3716
    [18] Zhang Xi-Tian, Xiao Zhi-Yan, Zhang Wei-Li, Gao Hong, Wang Yu-Xi, Liu Yi-Chun, Zhang Ji-Ying, Xu Wu. A study on photoluminescence characterization of high-quality nanocrystalline ZnO thin films. Acta Physica Sinica, doi: 10.7498/aps.52.740
    [19] Shao Jun. Optimal photoluminescence spectrum from Ti-doped ZnTe. Acta Physica Sinica, doi: 10.7498/aps.52.1743
    [20] LIANG ER-JUN, CHAO MING-JU. LASER-INDUCED LATTICE DEFORMATION OF POROUS SILICON REVEALED BY RAMAN AND PHOTOLUMINESCENCE SPECTROSCOPIES. Acta Physica Sinica, doi: 10.7498/aps.50.2241
Metrics
  • Abstract views:  264
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Available Online:  13 November 2024

/

返回文章
返回