oW B W
BLORF 2 195486 H

B W E 5 RY Bk
W& B

(0 M A% B B & B W 3T )

il

—. 5l

R 88 7 AW T 87 Sk B R o T 2 2 ORI R 52, R S 5
MBI, TEESEOBRROEAEIREIHTAWNE. RENN, BB
BB — (E AR MO AR, D SO MR SUR B TR M BORERG . TE 1945 45,
B. M. #3uaidsk U g5 I 10, Eagsk 2 3R H A SEA RIS 5 B G fip
Bk, FEE T B0k AR E B iR A A T B BB R, Y3 T TR -
EMPIMES. 244 B W REEGibk O AR R T RE R
(E] 75 2 359 o AP TS 1A 58 8 P R A A 42 0 R T

1ER—E, SR R AR (1045) FIBRETE T 5 5 5 40 2
HRAERTOBGEME, £ RITRBR 2 1, S5 B 58 BM T —H
LHRPEROLR DGR, SRESISORRFRTER, FER
e SR B AR ~

ERTE 7 45 55 10 BB 6 B8 R AR T 4 P TE S M6 0 T B RE 2 P BB BB
SEILL O HE S , B AR SRR k00 TR 5, 3 FLE R B B B e O OB R+ MR
FEARELARY , AMFRUEE TR ph e 3 2+ ST BT O BRI SR AR RS, S BR
B RTKR S WS BIE) . T 1939 48, RPIFIGEE ) HhmARE W7
R R R — DI RE . ERABMESE (6] PRI PEMNS
FMIEBHAERE. 24 K. O. BEAED fosR® KT EAMBL,
BE X M. BABEEM P T. RE&Y LEHHETREMCWREHE,
A PIEIE TR ASEE M M IR B 803

*1954 4 3 B 14 H#l,
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A8 B 89 EEE S AR R T [ SR TE S ey B A T T o B IR P
T B0 FAR R RO B B — A, ARIE R ROFA SRR OMRE RS, R
L 3207 BRER B 5 By s MR T, TS W S 7E R e R AR AR AP B 2 3R 1R —
RAH FIROHER. RPN HEAIBRE H 40928 S 1E BUR 5 a0 ST kb &
BBAR, EBR—IEEEmIR LS EMRMME. BRMRETHBEARRESN
B & BOELUE GEEUMNA. 1.6%), FRBREMOSENIE m BSEME A
B MEMMEBIEER & MELME (ERES 1.5%). RMBREE » £ B
WA BBOREE, m R B ROITIIBIIR LR Bl SEFOBIE 7 KA & BRI
B%.

. HESUSRRTYE R I 3R 5 )5S 8 PR R

) ’%E&%‘“EE@ h, BER 2‘3;?3“\: p Eb p
BA f HRERME, EPRER | =
b WER ERRBTRGEE p, WR
U PR, MERARRERARGE | 20 —
p BRI EA BB R MK " 1

AR st R & 1945 S REMRY,

(=) BAFERRMIL .

FARA M —RRH, EHEREROEE [10] hEHSEOWER. &
ERE e, AR S AR T S BT RRMER, AN — e
M HTE,  EHAOR A kAR, R A PR A — R
R RE R AR AR SS12 E—A.  RIRF R MR AT A AN
F, R ERET RHMO.D  RRRBEE [10] HB (12.34) RFABS
% v FEEEEAT N, AR |

D 4 _d 1 d  dw_ ,_1 d [ (gf_ d_w>]= ]
7 dr " Tdr v dr " & 1 r dr 7N, azf+_ dr_ 0, (1-a)

-——

) ZeFRRSUEAGIMEE T, MR AT — R NP, B E AR, PR RE IR EL.
Hin B 4. 10. OanoB # B. U. deonocien fy#+:: O paBHOBECYH H NOTEPEe YCTOHUMBOCTH NONOTHX
oGofloyeK npy 6ONMbUMX Tpormbax,. JIMM, 12 (1948), 388.
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1 4 1 4 ., 2f , dw L(_"iY: A
4E T "dr 7 dr (P N:) + " Tar + 2\ dr 0. (1-b)

Kop r BT RGBS, E LMo KRLEs,

ER3

b=t

ADBRIE. RIT w N, 1%, ETHE TRAXZREBEFE FBE M, M.,
AR MRS N, FIREEESE «

Mﬁhdﬂﬁw+ﬁ‘w)

dar? y dr )’
| d S @
- 1 w w .
M, = D(r & TH g )
Ny =N, +r L0 | (3)
_ _ dN,
"= {(1 PN +r 2 } _ (4)

HERE (1-a) Feld rdr, RBERD>—R,HF

d 1 d dw J‘r < 2f dw )
D =G e 27 —_ El oy 2 ) =
4 ar r dr 4 dr 0 rqdr —r N, paid dr 0. )

ER R 1 RS 4A,

FoKr<b Rk, J‘T}rqdr=0;

(6)
B b r<atny, J;rqdrzpb.
BUTEBEB S HE (5) A:
®o<r <b R,
L4 1 4 dw (2, dw)_,. ,
D dr v dr | dr rN,(~02 + dr) 0; (7-2)

Bb<rLaty,
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d 1 4 _ dw 2f dw\ _
Dr —; ar r ar —Pb—rN,(—a-g-r'f‘“‘}‘r—')—O. (7‘b)

dw . d*w

Er=b & o2, 25 N, 0 mpasn, BERENIARRE
M,=0, N, = 0, %;ﬁ W iﬂ N, CE@JE%TFJ&E-M‘

§r=a ﬁa

2 : ;’I .
dtw dw N | (8-3)

N,=0. (8b)

R SARUE AR, FEA BT AR IR0 BB, BE o MREMEAY N, il
AHFE (1-b), (7) MBEREHE (8).

(=) wERME

1 B 4058 P LA AR BR T VIR B 5 75 AR ARG WA 45 T o B B B A B0 0%
BSERE. EERETRELT: “EEE AR WS RAOE MR
f2, R EARE BRI EEEE". TEAGHEES, #2 Q)
BRERHARSE, RSN w, N, SiaskmEnt, MERE B A% bRER «,
N, HERA SR (1-b). |

X

w == wy (1—p?) [1——;%(”], p=, (9)

Heh ow, BPOENEE, REMESEORE. SESXDRORRIEG
(8_3). %El M= 0.3) HM%

w = wy (1—p?) (1—0.2453 p?). (10)

ARLARALE (1-b), ER N, W—BHE. EIESBRMEFEME (3-b),
BB RTF

N, = — PAE20 (0.54088—0.62264 p2+0.08188 p*) +

+ "ET‘” (0.29589—0.38828 p>+0.10116 p*—0.01003 p%). (1)
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REERK (3) 7

N, = — Jlf,—“i (0.54088—1,86782 p2+0.40940 p*) +

+

hE w
2o (0.29589—1.16484 p?+0.50580 0'—0.07021 %) . (12)

REMNBERE TS BN, B—HaEesEDe:
IR (R RCOREE S

-2 N
= 0.3300 -T'E"—- SLLI (A)
a

h

B SRS R Ry (O BE A RE

V,, = EL};J‘(:(Nf + N2 —2uN,N)radr =

5 | 2 : 3 N E)
= 2EF {o.04184 w2 (-42-) —0.08500 x (5L ) +o.04335 () @

2
Fw
K = --2-} . ' - (13)
BRI HBEE:
V,=— Fwy (1—a?) (1—;0,2453 @)y =—7= ffi 0 ‘Z" , (C)
H _ . : :
_ &
a = ‘7) = 27?17?;
} (14)
0= -E2 (1—a?) (1—02453a®)
= ;;Ek’ a | Wz a’) .

# (A), (B), (C) Z=ffin, BRTERMHER:

2
V=—1'fz}’----Q 0. +0.3300 "E” (—‘”}ZL) +

5 2 3 )
+ 2 EF {0.04184 u’(—"bﬂu) ~0.08500 «( “ ) +0.04335 (—5;— }. (1)
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RN, v I W —o,

| 3
= (0.6600+0.08368 K’)( ) 0.2550 K( 2 ) +0. 1734( -,-;«) . (16)

EERFOBUBE v RAH p ZHESECIRG. BRETHERRAN « i,
o -t 5" Z MR mE 2 (R 111 ]) BiR.

ms] 2 TLUEH, & « KB, 0 BA—RKIER—IBH/ME. HER
SEHRS (RBSHRCE)/ME) THETMGARE THELHARR. R
BEEAARE R 00 4 O MROKE, RONEHITSEA O B 0 WR/ME.
RIAK (16) % 0 MBFMEIR ME, BPIE |

Os = (0.3236 k+0.0001588 «3) +0.00774 (k*~—16)¥%, }
(17)

Oz = (0.3236 k+0.0001588 ) —0.00774 (xk*—16)**. "

Os, Or | « Eﬂﬁﬁ%tﬂl 3 (R 112 8) HIRRARFTR

LRSS B USRS S R, BUER 3 'IEJE%SR%H‘J Os N
Or BHBRRBHM A, BRTRIEBRARBZMUER, REKBRRZEREF
[5] WRERA T FEBIPHEERE S B

TERRK (16) My—EAHER, M EE
0 = (n+mk?) \—!"—°~ — I (—“—’2—)2 + (%)3 (18)

KB n, m, I p ﬁﬁﬁ?ﬁﬁﬁﬁﬁﬁﬁ&%ﬂ’]ﬁﬂ e (18) KFREF O,
O« H’J%Atm"ﬁ

05 = M{%(-K’Iz—_+c)—1+ 1—--—( T+c)]m},

or= {3+ 6)-1- -3 (& +9]").

Heb 4, 7, { RAENP=ZARR. SERBEIRE « = 0.8831 MRERBEERK
pia B '

(19)

7 =1276, ¢ =2065, p=0.05912. (20)
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2K (19) FREH (20), THEBRIFAHLEBRLKX (2= 0.8831),
PEFPREORFFN O Or 8 « MFFwE 3 MERIR.

=. EB%EAR FIERE
J . [R] 7T A4 R i R

(=) BEXRFERHMIL

B f KRS & E 5o TE A Kt A R Y C ' D
R, 2HE 4. HAERR LS R 4.

WERT, BREESE (1) %

D 4, 2 1 4 dw_ 1 d[,y(2f,, dw\].
r dr rF?;-_r" dr ' d:) v dr [’ N,<?r+ ar ]#O’ (21-a)
2
BBy e NS (e =0 (21:b)
BABRAK (2), ARRBEFAER R
s r=a K,
w=o, D( G+ EG) =M V=0, C2)
AR (21-a) FLL rdr, RIEFHD—K 15
pr4. 1 4, A —QN,(?—{ o -‘%)=0. \ (23)
BT R, 5| AT A S My B &
_r = 1o W - _ 9y
P=—s v'12(1 ,u’)b, 6 = dp”’
P N o
s,=_l2___(_1€,;§‘_)" N,, S=pS,, (24)

—r2v =t 12— V12 (1—p) 2
K =2v12(—phS, m= ( F)Eb‘( #)a
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FIAHELRER R, 58 (23), (219) FLARMG (22) 2HIHHR:

(06) + 2?8 = — 95, ‘ (25-2)

4 1 4

dp p dp P

d 1 4 6*

B A . S ~kpP=— 2. -
dppd(f’) kﬂ__zp, (25-b)

SER—AFAR AT A . SRR SR AT T R
BAEA T A EMEHS, BEE » BN, THRENREERER
5, EMAARREELRE. TREBRMTUERE, BT m=0, §=0,
S=0 EEMELGOBLI, WHRITERHOIMES RS, B—AERATe
B—IAPHAE A, B,

mqm,8=~§muﬂm,m=u+mr. (26)
BEAAERRTEY TS, 55,

0 =2%2p, S=0, m=2(1+p)k2. \(27)

ﬁ?fﬁ}i"a]‘ﬁﬁﬁ“ﬁﬂ%ﬁﬂ%‘:ﬁﬁﬁ%ﬁﬁ AT TS 6, S, m
HAFRAKEEHER 6, S, m:

B=1rkp+&, S=— —E— p(1—p)+S, m=(14p) K> +m'. (28)

# (28) KRAFE (25), BRMF/ 0, SHEANLFBRRERBEAHWT:

d 1 _d & ng — - 88 .
d 1 4 , 0

e 1 8 (=YY" 29-
dppdp('o)‘ 2p (295)
Eo=18 L +prl=mw, 5=0. (20<)

HE (25) # (29 %Eéiﬁﬂiﬁ‘rﬁﬁﬁ?ﬂﬁﬁkﬁﬁiﬂﬁl?éﬁﬁlkfﬁ U
"Fﬁ/l\’ﬁ‘ﬁ%ﬁ]‘ﬁ’{iﬁmu&{uﬂ?i
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(Z) NERiS -

It?tﬁfﬁﬁﬂ%*ﬁﬁﬁﬁﬁw@ﬁtt&&ﬁﬁfﬁmFﬂﬁﬁl!tﬂ%ﬁ B HH
AR — LR RO RER .

58 (25) PREE 65 F & Fﬂlﬁ ﬁ%ﬁ&%iﬁ*ﬁ’lbﬁ?ﬂéﬁ{%#

da 1

TR _dp (PB) 4 4*S =0, | (30-a) -
da 1 4 ' 20 .. ‘

4 1 8 (p5) 126 0. 30-b
Jo" 5 dp (pS) — k (30-b)
s 5 — ﬂ’_ 6 . | = 30.

= e=1FKF, d,o"‘“p m, $=0. (30-¢c)

# (30-a), (30-b) %k S, B 6 H—IBHELT:

'.J_

1 d
dp p

d 1
R

;,‘1' (p0) + k16 =0. (31)
BRIE P =0 B 0 BAIRE,FUFE (1) MERTERR
| 8 = 47, ko) +7 1, (Pko) o (D)

Hep 1(z) EEEE -QEEREYK, i=vi=V—1,4 BHEEK, 4
R A M EEY, ®

(8)e=1 == B, (32)
SRR (D) B :
_ B (LGke) . i (GRe).
o0=L {000 56 : (33)

FENE 6 ABiRET S FIREESHE (30-b) TIASHMEAE (30— RIF. FERE

_ 1B Ji(Gkp). _ L1 (FPke)
s=2F {4 GO " I - (34)

R m AR LMEE B ZMIMBUS AT (30~) R/F. HEL

m o k{idoGRY | PJo(PR)
T+put 2{ Jf’(;k) + TG } (35)

m; M TRIEIR 1 R,
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10 %%

1. m=m/Ba A (u= 1),

X 0 0.5 | 1.0 13 2.0
my | 13333 1.3339 1.3435 13850 | - 1.4899
k|.- 25 3.0 35 | 36 3.7
m | 1.6839 1.9691 2.3165 2.3909 2,4645
k 3.8 3.9 4.0 41 | .42
my | 2.5382 2.6134 2.6890 2.7640 2.8371

AR (33) Ha—K,ERREMGEE y @HX

y=[ 0o = L {JalikO)=J (k) 4 JoGRO)—J(PR) ).

2% 71 (7&) . Al GR)

B & AR ER, 2K (33), (_34), (35), (36) S-BUMBLH?

m

2= 1+p y=-Ba-en.

B A HIE TEPAR B 22 ARTE
B R ARKT p AR/, BRI AT A T ARERRK:

o (i%p) = e r(F-22))

1—_cxp{ =
Vv 2rkp V2 ‘8

J1 (k) ‘/»chp{‘/?-l-;( g Va3 } ‘

lﬁ)ﬁ@&&l‘i&,ﬁi& (33)5 (34)) (35) ﬁ‘slj%'f‘tﬁ

2B A Veos A (1—p),
6 e p{ 1,/7(1 P)}co V1 (1~p)

=—ch — % - sin——&— —
S= v p{ ‘/311 m} »/7(1 e) .

o

m
Mo itp+ R
B # 22

0=.ﬁp’ $=0, . }

(36)

(37)

(38)

(39)
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B S REEMSNMBRARIR. & & B, BEHROTERIIER
(k= 0) BOABML, fulirkbiy & = 2. % &k TR, BEMBER—BRME,
W@ k=4, 6, #H k EXF, BEHQTRESERME. 3% %
A on ERAMERE (5 + 1) BER/MEGIREN & E, 8BS TEHNSE

(%%)m =0, & ~,%Im,‘J1 (j&) = 0. (40)
B IEA BRI AR
kL = 3.77, k, = 8.28. (41)

LE—B W <k <h BBE. K m RARE, ASMBREEEN, B
HASE BRI E R 5 R k=4, TEEHBA, BUBHBER A
B, BEE m BAFF, Wl m=20 + p)k* ROENSESRE—IBIE
B, TR BARCOTECE B 5 Ay & = 0. RPBEBREELE—EEERS
B AR S —H R IR AR AR E R R AR RS, MR
BEBBEFMSES —ETEROR. EhTa, =377 BTRE
APIST RS & EP LR, STROMIORE &k MERRIER 3.54, WM
R TREHE AR B4 .

() FHRRESREE

T (—) /M RF RS, &R B BUR R, 518 (25) MM
Bt

6="xp, =—~f§-p(1—p2), m = (14p) k2. - (26)
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ﬂ%ﬁ@%ﬁﬁﬂ%ﬁﬁﬁﬁ
_ 9 ___kq — p?
S,_-m.‘_ »1—(1 p),
(42)
= _d_ _‘S = — ’(4 —
S, S, +p 1 (1 3P2).

FEMIBAR TR, CHERTR, S, 2BMS, S, 1 HIHHIEESY,E
AR RA . FRE S A0S, AEE & MOEMITTE . enskGEEAT—E
iR, BNEMAHREEREREEN. BABIRERIE OB ERE (MR-
KRS m HFE) PRFGEN—E, EHERFRRERREN, HEE
AURERRMERES; K2, ETRESNREES. FUSRFRELS
RETIREY & RS, TR RERT THELKERS WERE, XD
B SR IR . .

B¢ 0 0 S H—A I O 0 S, BRI m = (1 + p) 2
B2 R®, EHE (29-) HHk 05 —FERH, B |

d 1 4 v+ & : o . i
W?Tip_(“’m 16 (=0, (#3:2)
. 46’ g _

=1 B, &2 +upY% =9. 43-
& p I. b I 5 0. | ( b)

¥ ¢ ME—ERER, 58 (43) EARESHEOREE, EHS IR
A A 2 fl P L s | |
B ko R B (43) WRRIBRAEHAME, B 0 = 0 (), 0'=9(p)
MR AR, BRBERE ‘ |

da 1 4 ) k:- 2\ . =
TP—?W(P%) + 16 (1—p%) @; 0,
4 1 d apy i k(e =

WE—RRL pp, BB 0P, RIEFAAR, S

1 d

L (a4 _ 24 —o) e =@ p 3 1 4d V—gppd 1l d
16 K — kD PU—P) @@ =Pip g — 2 (0 @) — @05, = 75 (PP .
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MHXAE 0 B) | MK, EBEIBFEH (43-b), ER

Tlg (&7 — &) f: p(1—p*) @ipidp = {qof—f; (i) — i —}; (1) }|: =0.
REBREBE kFhi, B

e pieian=0. (44)
SERABERISE A BEMESREER. WERMNBE ¢ SIEAL, i

1
[let—eoipido=1. (45

BEE ¢ BN —HIEZIEAR.
FE—BAMME & EEAMER ¢ TETARAARNEUHRE., & @
BEHERBAOH. € O, MBTASENBFEAEERRE 01, P2

4 1 _d_ L oy—p2 = .
dp 5 dp (p®,) + T (1—p) Py =0, (46-a)
% o=1 8, 949 p 9 _p. (46-b)

dp P

fﬁi‘!ﬂ] ¢l.') 7% 1Y H‘J~*1E%Eﬁ:sﬁ$@%9(5k ¢1> ¢1)"' Eﬁ?mﬂ. E%"‘_‘j—ﬁa
IR AER, ¢ TUR ¢ BBWwT:

Po=a, @+ mP, + =D 2. (47)

i=]

HEBEXHE, BEANA ¢ IASK SR, RERH

O, = Pt @t =3 Lo (48)
1 2 =1 f

L

iR o RSREIEE » ARAR RAGRE R - HER R TR, B
0, AR EAMERHE BB, BTRE k. ki
Fo= 0 — k{0, = 3 i(—':f—"—l)—qa (49)

=2
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10 %
FUREZHER (44), H# LRXTR
J; p(1—p) F, @ dp =1q. (50)

R RAA0 BB FRRE, TR @ EME 0<o<! MM (ERE) R8s,
HHAHE (50) BHI F, EXERMEBREER, £5 - SHERLal. sk
" F, =0 ZEHE 0<p<] H‘Jﬁimﬁﬁ’}‘ﬁ—-ﬁm. ®"po=F FEREH

D,-.(8) — 1(14 ?,(¢) =0,
B HAR ' '
_ 9.-,(8)
A G
EERMTUE 2
min g <t < mox S
ISPl
Bl fu AR
wo = P
R
~_ L Q@rme P _ P
9 = TE{ 12(163—#) g 24}’

2 3
P, = 1_{ 123+110p+27&_p__(_2_-_k_£)_3__+

162 5760 (1+p)? 96 (1+p)

RNG= T VA A
216 (1+p) 36 1920 §°

WRRBAK (52)

7680 (1+p) Q+p) o pe o 7680 (1+4)

123+ 110p+ 2747 56+ 164
FIL p=1/3, EF

146.99 & ki < 166.96 ,

(51)

(52)

(53-a2)

(53-b)

(53-¢)

(54)
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Ap .
3.4813 < k)  3.5946 . ' (55-2)

N ;14

ki = 5 (34813 +3.5946) = 35379, (55-b)

MEERMELRE 1.6%.

() @ A RARNEES 091 7S .

2B RAFIARET B R TR i DS R P HUR B BT T . R4 90
RFE B = (0),-, B » RN EZMAME, EHE (29) PhEE
ZRABREH, EBw T AL R R R AR

e+ £ a-me =0, (56-2)
# p=1 ﬁ,—%+p—"}=m’. (56-b)
4
g = 1':_" (p+8), (57)
BREE O WA ey A B S Ne0:
d 1 d ¢ 2 N & 2
—H?W(pe) +%‘—(\1—p)6- —i%P(l Y, (58-a)
e a8 o _
" =1 ﬁ;*d?'f"l-‘—p-*—o. (58-b)

RAE (43) K, TR 6 Pr#Qt 5 BIA RGN, RAKESTHA A
Bl & & RANBEE R B R BY, 8 THLHBTRR

&’ '
8 = s (59)
_(_k_ ! -
. Ih)
i 6 EA T RFETA T

d 1 d N . -
do s dg e =—X p-p, (60-a)
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w o s, 40" |, 6 _ _
"é’ p=1 B¢, 2 TE =0 | (60-b)
BRI H
P 2+p)p _ e, o
o =5ttty — & 5 (61)
FR b B s L1 3 %
o k! Qtme _ P, 2]
0 = tet — [ 4l @

12 (1+p) 8

161 ()]
EBAXHY p=1, ¥ (@), =B BEH

;o s - (4]

== —— i (63)
. (ln) t Tz (1R

%n @ = 1/3’ kl. = 3'53‘797 Al m'l W%*ﬁﬁ*ﬂﬁ 2 FoR,

=2, m OB

k 0 0.5 1.0 1.5 2.0

my | 1.33333 1.33307 1.32811 1.30663 1.24656
k 2.5 3.0 3.5 3.6 3.7

my | 110809 0.80559 0.08956 | —0.14048 | —0.48840
k| a8 | 39 4.0 4.1 1.2
m | —0.91235 | —1.48830 | —2.30965 | —3.57047 | —5.73215

() HERMEZMOME HERRENHE

EHL&$%}ﬁﬁﬂmTﬁM§ﬁﬁﬁ.i%ﬁ*ﬁﬁﬁ*i%i%#ﬁ
BE9 AR (25) F0 (29). - MERU L REBAEEE, RFIBA T BRIk 1 A 8
m REEE B MBI RR, |

B k< ki B, NER—E » DHEEE 0, HILEEESA B m
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MFEER. F k> & B BEOA—E » ETSEEAEMEE 0, KR
Be, BE m MBAHK. BEE ¢ FhkiR, » £ B MEEENR.
FERWIE & CBEFAE &k, HHE R <k W om £ B rORAES.

BB RE 0, HEE m WMk ET. EHESHSETELER: %
E k WIEBRME K, BBE & <k ¥, 0 B P AyB{EEIRL.

0 () NERWIABLL, B ARME SR TREMRETEFRRE. B
BEFE G &, TRBRE T AU RS S B — B A B

a4 1 L ’ __ki — 2 A = .-
2Ly + K- e =0, (64-2)
Ho=1F, 0=0. - (64-b)

k. M ETFERTARE(Z) MR EERF, ok

¢0 - P, I ‘ (65'a)'
{E 7SR5
A — 253 5 - - ) .
P, TRHY (2p —30° + £°), : (65-b)
- 1 R a3 5 on o7 5 3
Q, E %10 (27p—60p +50¢ 20 p7 + 3 p°), (65-c)
I S _ 5 . )
o, = R IO (225;,0 5670 p° + 6090 p5 — 3850 p” +
+ 1470 p° —- 322 P + 30 p"?) .- ‘ (65-d)
Oy _ . 16X24X70x(27—33p2+17 p'—3 %) .
@, 2252—3418 p¥+ 2672fC1178 P°+292 pt—30 p0*
min 0, 332.3, max o, 364.5,
B 3
3323 < k<3645,
Bn

4237 <k, < 4.369. (66-2)
I -
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ko = 3 (4.237+4.369) = 4.303, (66-b)

Rl k, FISBEOZEERME 15%.
EUATHR i, RIS RRR £ <4237, EERBHA, m RLEER P
#o EAE BB, '

m=m(B), T m'=m(p). l (67)

HRER LLEBNE R R RUREIR, FT R (m, B) S# St T MR (R DM 6):

[4
o s

o | ld

o}
[
1) RS O MOBOBRER m, RHE (35);
2) PGSR O B, WESHIAEER B = k', m = (1 + p) k2, BHE (26);
3) £ O BHOBMBRER m,, BAE (63);
9 HRRR OB, O'n BHERNBEN, BTLEFE (29) B,
BT ERWESL, BRR 0B WZMNEK 0COD BTMEMRA,
SERTRR AN R, PR RSP, IR R IE MBS
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R R
0 (el amme e
RS R
zu,=-§j;{%[7$;(ﬁn]-—2(1+y)3—%§}dp.
B bR e AR R U 7
j (p0) T—2(1—p) Bj—g} dp +-
+J:{-£:[7;<PS>]’ 20 s Gt 0

#6 t S HEKX (26) AN, EHHFS,H

[Fmpy ap = L rm ae+ Ao (69-2)
1
. ' 8 ’
[Lmerap =-Larmr + A (69-b)

AR -HEMET (n, B) MBNEEEE. BTELHBEH m (B)
B (B), RMTRE
=ik b () i (L) i (£) (70)

FARE 1), 2) FAE (69), RMEEBE m;, m;, m;. BERFRE

'm=-—o+m+-~nmmr—§5, (71-2)
’ ’ &"
’ ’ p1
m7=3(1+}1)+m1——4ml—~3\-2—. (71-c)

my, ms, m, MIETBREWE 3 AR,
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% 3. mi, mj, mh M B AN

k 0 0.5 10 s 2.0

iy 0 " —0.00007 0.00517 0.02784 0.09892
mi 0 0.000061 0.00024 —0.00139 " —0.01581
A 0 —0.00029 —0,00019  |.  0.00026 0.00366
X 2.5 3.0 3.5 3.6 3.7

nry 0.30606 0.95312 3.26542 4,12288 5.63924
me ~0.11168 —0.64092 —3.29081 —4.35313 —6.37887
m! 0.03087 0.21554 | .  1.26927 1.70406 . 2.56137
k 3.8 3.9 . 4.0 L4l 4.2

ml 7'.56049 10.34036 14.53574 21.30766 23,42073
i | —8.98638 —~12.85587 | ~18.82038 —28.61924 ~46.39690
™} 3.67157 5.33715 7.92762 12.45239 20.04165

AR (70) FRZAK (71) ERLE T ARBAE ZMI R, 4=3.8,
3.9, 4.0, 4.1 SWMEHGLE 7 R, HEETURH, ¥ >k B, (m,
B) Hif £ O BMHEEAR—BRAER—ER/ME. & t EAR Ko
k= 4.1), HEE O BMEXHR T —~EREAEE—ER M. HELE O
2T SRR 2 A, TN — B A TR, RSTE O WML RAME
SR MEM R R BEEE &>k BE (m, B) BARSTEICLE 8 Pim. ARk
F—g P AR TRATANRE. SREM—RBL T, HENIRS
BHEE m ALBEWEM, VR RPN P BEE O BB #hir 04B
EHATIEER B B, & m FENTIEE B 86 m i, B8R P BSAEE B B
BKE C %, RAE BOEC BEM m 5L B B m /.  mBITT@EN
SRR — R, AREH P WAL B B C. BRENIE m, A m Mk
Kff. ZAE m BRWE P MK CD ER. ARAE P HE DM
% m B, KR P BEW DCE THMEM E 8. ¥ m B, P
WELEAE E BKE A B, AL EOBA By m (LA E B0 m f&
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o 8.

K. BAETHEXEFARTE —RKE, MER P BE® E B 4. BAY
8 omy R m HRME, ‘

BIARK (70) R m HBAERR ME, RS m, m B &k SHFKD
B9 PR, BAREE m=0, k=35,

B (m, B) hiRBEN B MERBBA, T

% (max m+minm) = 0" B& m,
i |
—;— (m,+m) = (1+p) kz: (72)

BR--EESER S ERENMMR, 'ERUIBEERBKE L ENFSER
k MIFBBIEN, IR /4 BRIELH,

m., k)

BRI R E 0 DR P, AR R— B R M, £ B B
BOERPPRR R IR ET, RITH TIEEA R BRI > %R
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H—RAVE FMRR . REENNGE ) ERKE N EORSER & BRI,
BEEBH LR BEDERGRES. RMABRETHE SRR RHOER
k AGERUE, FURE m 2 B RBEEBMER & ERME.  SIEMERG
K 1.6%, RBEETME 1.5%. BRYEHPTAE BN RSO E B ik
B ARBEHREE T SRARER,

THt m R B IR, IEIE & EENk FRRSREME RN BRY &
Wk KRR, EEST-ERSENER. BHRABHERIELMRN
m{ WREREFRBIRAY. AR (63) BW m/ B & BOEOTIRA, 106K
kL E k=h B, m/=0, ERLRHEREAM—EAR. BETOE k>4
B, AR (63) REM m’ HREMN (EMREELRENK). #HE
R, REA AR RIS T, m AR TLBBYGE, BT m f B MBIR
pLE e

k O PR AR BT 5 M A B B R ), T T S5 A
BAHARE, RILE B AR R R AERE. (AREAAERER
FRRREERLE, ARAEENES. S FET BT A0 7 i o2 e
1 B RS T, B e A AR S A BT B R AR BB T S50, R
BTLIERE SS12 R REBERKE. (SR EERANMRERRSSE
— U A T SR A AR T 5T B P BB A 2.
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ON THE SNAPPING OF A THIN SPHERICAL CAP

Hu HatcHaNG

(Institute of Mathematics, Academia Sinica)

ABSTRACT

In this paper, the snapping of a thin spherical cap under edge moment is considered.
The snapping of the same cap under line load distributed along a circle as shown in Fig. 1
has been disscussed by Chien Wei-zang!® 5! in two unpublished papers. His results are
briefly summarized in this paper.

Consider. a thin spherical cap of thickness 4, span 24 and radius of curvature 2f/a?
under edge moment M per unit length uniformly distributed along the edge of the cap as
shown in Fig. 4. The deflection w and the membrane radial stress N, at a distance r
from the axis of the cap satisfy the equations

D 4 41 4  dw 2f )]

r dr dr s dr 7 dr' r dr ( r+ =0, (21a)
d .

keblhemede e (8o ew

with the boundary conditions

d*w dw
= Sta L = —M,, = =
w=0, D ik + s e N, =0 at r=ua,. (22)

By integrating Eq. (21a), we get

dw 2 dw \ _ '
—r————rN,(-az—r+~Tr>—0- (23)

d 1 4d
Dr v &4

In order to simplify the following calculations, let us introduce the following dimension-
less variables:
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P se=y - — Ay
p=—s  y=viRQO—p),. b= ;

— 2 F3
S,= IZ(I—EZ;‘)a .N,, S = P S, s (24)

} =2 ‘/E(l—"f‘)y};i . om= 1_2(1?‘&2_)_};2?1____)‘_5)“_2 M.

By regarding @ and S as functions of p, Egs. (23), (21b) and boundary conditions (22)
reduce to

d 1 d 6S
41 4 ey +pr5=-9,
3o o dp (PO Tk y (252)
d 1 d 6
—_— e S — = — —, . 25b
15 o aa P~k 35 (25b)
.gg_ﬂ.%:m, S=0 a p=1. (25¢)

This is 2 system of two non-inear differential equations. Exact solution of these
equations is very difficult. An approximate solution is given in this paper. Here we
may note that two simple exact solutions can be found when m takes two special values.
The first corresponds to the case when the cap is bent into a flat plate. In this case

b=kp, S=—kotu-p, m=G+pe (26)

N\

The second corresponds to the case when the cap is turned over into an inverted spherical
cap. In this case

9=12kp, S=0, m=2(+p) k" 7)

In order to investigate the behavior of the cap near the form of a flat plate, it is
convenient to make the following substitution:

6=kp+0, S=—K pU-p)ts, m=QtPbtm.  (28)

Substituting expressions (2§) into Egs. (25), we get

4 1 4 Koy =_0Y

1o 5 dp (p®) + 15 (1—p)) 6 s (29a)
d 1 d , 62

4 2 4 (psy=—-Z_,

30 5 dp (0 5) r (29b)
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a6’ 0' oo -
vr -p— =m', =0 oat =1, (290)

Equations (25) and (29) are fundamental equations in this paper.

We begin with the investigation of the small bending of the cap in accordance with
the classical linear theory. By neglecting sccond order terins in Eqs. (25), we get

_di._ (06) + k*S =0, (30a)

P

I

4
dp
4 1 4

£ (pS) — k¥ =0, . ' (30b)

<
o

ap
a0 8 _ _ —
gy TH =M S=0 a p=1. (30¢)

The solution of Egs. (30) under the boundary conditions

=B 8§=0 a p=1

is

_ B (1LGhe) | 1i(kp) _
=3 {Jl(ik‘) M) } (33)

) | . -
s= P (LR - B, i-vmieviT 60

The relation between the edge momenr m and edge slop B can be found from Eq. (30c).
Thus we obuain

e — & i1GR) . PJe(i2h)
m= ol e {.ho(;k) SR INE (35)

m_a

Values of ¢ for several values of & are given in Table 1.

Integrating formula (33), we get

_ B (Jolikm—JoG) 4 Jo(ihe)—JoGi*R) |
y = Zk{ SETGE e B (36)

Deflection curves for k=0, 2, 4, 6 are shown in Fig. 5. When £ is small, deflection
curves resemble that of a flar plate. But when £ is large, deflection curves have several
waves. The transition from n waves to (n-1) waves occurs when k satisfies the following
condition: '
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—3%— pe = 0, i. (-1 —‘%' Im ]J)_(j k) = 0‘ . (40)

The first two roots of this equation are

k= 377, k=88, S (Y

Let us now consider in some details the case when &y <k < k2. When m is small, the
bending moment at the center of the cap is negative and the shape of the deflection curve
resembles to that for k=4 as shown in Fig. 5. Buwt when m is sufficiently large, it is"
evident that the bending moment at the center of the cap must be positive and the
corresponding deflection curve resembles that for £=0 as shown in Fig. 5. The transition
from a waved deflection curve to an unwaved deflection curve cannot occur in a continuous
proccess. The transition must be carried out by a sudden jamp, i.e. by snapping or return
back proccess. Therefore £=3.77 may be regarded as the upper bound of § for the oc-
currence of snapping. A more precise value given below is £=3.54, which justifies the
above reasoning.

In order to determine the critical value of £ for the occurrence of snapping, it is
sufficient to consider the stability of the cap when’it is bent to the form of a flat plate,
It is quite clear that the form of a flat plate is the most unstable state of all deformations
corresponding to different values of m. If this state is stable, there will be no snapping
action. If this state is unstable, then snapping is possible. ' Therefore the critical value
of k for the unstability of the flat plate form is also the critical value for the occurrence
of snapping.

The critical value of k for the unstability of the flat plate form is the first eigenvalue of
the following differential equation:

d, 1 d ’ 4 — 2 ,

0 7 dp (P®) + i—16 Q—p)0 =0, (43a)
46’ g _ _

o tH5 =0 @ p=1. (43b)

This value is determined by an approximate method. It is found that

3.4813 < &, < 3.5946. (552)
Therefore if we take :

ky = 3.5379, (55b)

the possible error of this value is less than 1.6%.

"We next investigate the behavior of the cap near the form of a flat plate. Our purpose

s
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is to find out the relation between B'=(6"),=; and m' when B’ is small. By ncglcctin-é
second order terms in Eqs. (29), we get -

4 1 4 K )
' P dp(pﬂ)+ 1—-p6" =0, , (56a)

a6’ 4

L o+ =w a =1, 56b)
i TP, I (
This equation is solved approximately. We obtain an approximate relation between m’
and B’ as follows:

m’ , (1+ ,u).[l — -%)4]
= m= 5 . (63)
1= (4 4+1_92(§W

Several values of m'y, taking k1=3.5379, are given in Table 2.

Up to now we have disscussed only two linear problems. We do not intend to solve
the non-linear equations (25) or (29). Based upon the previous results, it is possible to
construct approximately the non-linear relation between m and B,

When & > &), corresponding to one value of m there may be several deflection curves.
Therefore in this case B is a multiply valued function of m. But for not too large values
of k, m may be a single valued function of B, -It is found that the critical value %, of %
that, when % <R,, m is a single valued function of 8 lies in the interval

4237 < k, < 4.369. (66a)

Therefore, when £<<4.237, m is certainly a single valued function of B. In this case m
may be expressed by a power series of B, or, what is the same thing, m’ may be expressed
by a power series of B,

According to the results obtained previously, the curve m"=m (ﬁ') in the (B, m’)
plane (Fig. 6) have the following properties:

1) The slop of the tangent at the origin O is my, see Eq. (35).

2) The curve passes through the point O’ with coordinates B=4%2, m=(1+4p) k2,
sec Eq. (26).

3) The slop of the tangent at the point O is m{, sce Eq. (63).

4) ‘The curve is -skew-symmetric with respect to coordinate axes O’8’, O’m’. This
follows immediately from Eq. (29).
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Besides these results, the area OCO’D in Fig. 6 can be found without any difficulty.
This area represents the work done by the external edge moment m. According to the
principle of conservation of energy, it must equal to the strain energy of thc cap at the
state corresponding to the point O, In this way we find

.J"‘_kl ' (B df = — % (1+m i+ —7% (69b)

Thus for the approximate representation of the relation between m’and B, we assume
a curve of 7-th degree

= ﬁ-+m3( Y+ i (B Y+ (£2) o

where m'y, m’3, m’s, m”;, are determined by the properties cited above. In this way we
obtain

4

my=i (1) + B —em— L

4

my=— L ) = L tom + (71)

.
m;=3(1.+p)+ml—4ml—§2—.

Several values of m's, m’s, 'y are given in Table 3.

Equation (70) in conjunction with coefficients (71) defines approximately the relation
between the edge moment m and the edge slop B. In Fig. 7 is shown m-B curves for
k=38, 39, 4.0, 4.1.

Let us now examine in some detail the behavior of the m=m (8) curve in connection
with the stability of deformation. For k<ky, m is a steadily increasing function of 8.
For k> %, the function m==m (B) has relative maximum and minimum. Apart from
a slight difference near the origin O, a typical curve for £> £, is shown in Fig. 8, where
the curve at the right hand side of the m’-axis has been added. It may be proved that the
maximum value of m is the snapping moment m, in the process of loading and the
minimum value of m is the return back moment m, in the process of unloading. Values
of m, and m; found from Eq. (70) are plotted in Fig. 9 in dependence with £.

Since m—B curves are skew-symmetric with respect to axes O’f’, O’m’, it is easily seen
that

This is an exact relation theoretically.



