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ON THE GAS FLOW AND HEAT TRANSFER IN LAMINAR
BOUNDARY LAYER FLOW

T.v Huwe-Sun

(Institute of Mathematics Academia Sintca)

ARSTRAGT

The equations of the plane, laminar compressible boundary layer flow past a plane
or slightly curved wall

op 6 u —
5 T 37 (ow) + (Pv) 0,

VRGN PRNR PRGN TR N1
Par TPy TPvy, o T3y \F5y)

—_ 07
0 ay’

B(C, T) N N ~6r
el pu 52 (CpoTY X+ pv 5y (C, T)= Y +

oy (R 55) +#(5)

are considered. The compressible fluid is assumed to be an ideal gas. At the wall,
the effect of a small suction is allowed for. From the equation of continuity we find a
natural transformation of coordinates

6?

+ u

8(x,y,2) =¢,

X(x,y,8) =2, Y(z,9,2) = 5

and a change of dependent variables

ﬂ(X,Y,8)=u, P:D(X,Y,O)—PVT‘P; aay +P; gz_‘o"v,

where p, is some standard density and V is the velocity of suction at the wall, The
equations of continuity, motion and energy are transformed respectively into

P
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-where

If we assume the viscosity of the gas to be directly proportional to the absolute
‘temperature, the equation of motion simplifies to

oz , . 0a (- Py y\82 _ 1 8P O
ae+“ax+”+p,V>aY o X Viayl’

‘where v, = -p& . The equation of energy simp-liﬁes to
L4

LS s _ 1 ab)_
ae'” +(a+ V) v, -

.1 0P _ l—¢ _ 02
=% 38 ”‘aY< s “38Y

‘where % denotes the stagnation enthaepy

ey B
and ¢ is the Prandtl number: ¢ = E;ci )

As an example, the problem of heat transfer in the steady, plane, laminar, compres-
sible boundary layer flow past a semi-infinite plate is considered. The velocity and
temperature in the mainstream are given by U® and T respectively. The temperature
at the wall is given by T, The effect of suction is not copsidered. The viscosity and
density in the mainstream are taken as the standard quantities. The equations become
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and the boundary conditions are

A=0=0 at Y =0, x=U0 at Y = o0
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at ¥ = 00,

A new variable
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2 F.(o)

and a stream function ¥'= %()m_x f(7) are introduced. The equation of motion

reduces to the well-known Blasius equation

flll + ffl/ = 0
with the boundary conditions

f=f=0 at y=0, f =2 at p= o,
Further, a function g is introduced such that
h=A" — (W —20)e(z).

The equation of energy becomes

T NPTy
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where
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We consider the case where the Prandtl number is a constant. We find that the average
amount of heat ransferred across a plate surface of breadth unity and length / is given by

0o k(‘”’T“')H <.>(\/ (o, )(p ()= 2H )U«»z(,_n a. (),

U®2(g—1) 2H
1 U “’Iq"“ d.f
where a.(y)= J.,,e_a e s s Pa(p) —j oYy f'(e':') (&) deg.
0 0
0 .

Inwroducing an appropriate Reynolds number

and a Nusselt number N= F%QTB-@)— , we can put the result m the following form:

- Cc® T [‘ y—1 ]
= 0 — " M0O)2 — —
N=yRa(){1- o L= Y5 MO (1= Po(2) (1= 6) b
U® . . . .
where MO = and ap 1s the velocity of sound in the main stream. When

a9

a=1, we have

c® TO y—1
P— — P £ -_— (0 2
N=Co{1 T (1 L MO )}

where Cp is the drag coefficient.

Next, we consider the steady flow past a semi-infinite plate, considering the effect
of suction, The following boundary value problem has to be solved:

ax T3y =%
du Pw 02 _ o 8B
”ax+(”+p<°> V)a LA

ga_l’_+(g+ Pw_y _§_I’_=v(0)_a_(l_a___)+v(°) 8 (1_" 02
c oY
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0)2
a=0=0, k= c‘(;v) T® aY=0a=U0, = (;},0) T© % =40 ¢ Y=o00,

In order to find a solutionr of the Blasius type we assume

T U<0)<c<0) )1
Oy = ~‘w
T 2 X i

where ¢@is a constant corresponding to a length. Introducing the variable 5 and the-
stream function ¥ as in the previous case, we arrive at the following boundary value.
problem:

"+ (=B =0,
f(0) =f(0) =0, f(»)=2.

A rough estimate of the velocity gradient at the wall is made by a2 method proposed
by H. Weyl for the original Blasius case.

Finally, a correlation between the compressible, laminar steady boundary-Jayer flow
and the corresponding incompressible flow over a body of revolution is indicated.
The procedure is similar to that in the plane case.



