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ON THE PROBLEM OF AXIAL-SYMMETRIC PLASTIC
DEFORMATION

Lin Hunesun

(Institute of Mathematics, Academia Sinica)

ABSTRACT

In the usual treatment of plane deformation problems in plasticity, the assumption of
static determinacy is frequently made, with the advantage of obtaining stress distributions
without reference to stress-strain relations. In the present paper, we consider the problem
of axial-symmetric deformation, where this advantage is no longer existing. The material
is assumed to be incompressible and entirely in a plastic state. The equations of equilibrium
are

ad, 61" 0!'_66 —_
or * Oz + r =0, (D
Qo Ol 4 T =y, (2)

and the yield condition is that of von Mises:
(6, —00)+ (05— 0:)+ (62— 0,) + 61,2 = 6 k%, (3)

The strain-rate components and the stress components are connected by the following
relations of Saint-Venant and von Mises:

. I. 1 -
b=2=120e—0—0), QO
5oi%=%l(2ao—6.—a,), | (5)
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where 4 and w are the velocity components along the r and z directions respectively,

A function y(r, 2) is introduced such that

_ 1 o
Ty = — ~ =3 (8)
1 o
Jz r a’_ > (9)
and a function 2(r,z) such that
w=—2 (1
Then the eq. (2) 1s satisfied and the relation
. 0 .
b= G () oo
gives
9, —0 _ 1 82
r - 37 or

Hence the stress components 6, g9 can be represented in the following manner:

P
The relation (,;3: ¢ = aa:g’z yields
Vs PFor PR o

The eq. (1) now becomes
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_’_l-_ i’z_ . (18)

and the eq.(3) becomes

.02+r.o( )+—

z 3).1 (__1_) =3k, (19?

The problem then reduces to the dctcrmjnation of three functions y, € and A from
egs. (17), (18), (19) and then the stress and velocity components can be deduced from
them. .

On account of the difficulties in directly formulating .and solving the boundary value
problems in terms of 4, 2 and 4, we propose to give here a few simple solutions by the
invcrse method and to partake physical meanings to the solutions obtained.

The first case considered is T,,=0..This means that 4=%(r). The eqs (17),
(18), (19) reduoe to

+Lﬂ_L o'
or or? 3 622

ERG T SEICRE o )a,(*-)—

=0, (20)

- (L), e
02+r9( )+ " (ag) 3R R, '. | -(zz)

*

Four different sitvations are considered:

1. 8=2(0), w=0. This gives

w = : . - \ (23)
a,=~—2keln(-:—),', » B (24)

ao=2ke[1—21n-(%)], | (25
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where e is the sign of #. This is the simplest case of plane axial —~symmetric deformation.

2. 2=0(

= const. Then we have

.= —~617(Br2—,4), (26)

1+\/1+ Azr‘)

o’,=C—ekln( ; (27)
26k
g9 =0, T+ 3 y (28)
vV 1+ :ifzr _
67((1 +*~—r) (29)

3
\/l+iﬁr"

where 4, B and C are arbitrary constants. 'I'hls is interpreted as the case of a thick circular
‘tube under internal and external pressures.

3. 9=0(z). This gives

-_ I — 2 Ar
= 3(A3+B), w =3 3 ; (31)
o =C, (32)
6,=03=<C— vV 3Kk, K = — sign (33)

where 4, B, C are arbitrary constants. This is interpreted as the case of a body of revolu-
tion undergoing uniform axial compression.

4. Q=R(r)Z(z). A particular solution gives

= — g— J:, (mr)cos (mz), (33)
_ ° q+2 dr -

oo = o, + (IJfZiiZ) , (39)

G
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— % (29+1) .
oy = o, + (l_i_q_'_qz)i ’ . (40)

where g=mr #(mr) » and C and m are arbitrary constants, The solution fs inter-
T (mry ‘

preted as the case of a circular cylinder, of radius p, compressed by appropriately distributed

axial loads at the ends. . '

The second case considered is %—5& 0 (ie. T, FE0) but £ = const. We take

2 r
ST e - (41

where U and p are constants. We obtain

Ty==—V3Adkr, | (42)
é;=2\/-3‘kA[2—6djr —I—Ld;itj-rz— ; ‘ (43)

do=0,=—V3 kv 1347 +

+2v3 k4 [z —6 AJ' -—w—l-g—’gfrr] . (49

The solution is interpreted as the case of an infinitely long circular cylinder (with radius o)
tightly collared in a tube, the friction on the contact surface being assumed constant
throughout. ‘



