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BENDING OF CIRCULAR AND RING-SHAPED ELASTIC
THIN PLATE UNDER ARBITRARY LATERAL LOAD

Lin Hune-sun

(Institute of Mechanics, Academia Sinica)

ABSTRACT

The present paper has the purpose of illustrating the usefulness ot finite transform method to
certain problems in the theory of elastic thin plates and shells. This method supplements from
the mathematical side the idea of Prof. W. Nowacki in his treatment of problems of this typefl.

[n particular, the finite transforms of a function f(x) over the interval 0 K2 << are
defined as

f(Em,i) = j; X f(:r) Jm(em.i V) dx ’

where [ represents Bessel function of the first kind and of m-th order, &, denoting the i-th
root of the equation

Ja(x) =0.
Then it may be proved that!”!

) = 2 3 Hem) PiEmn0
=1 S m\Gm,i

Using this method, we can treat the problem of a circular plate under arbitrary lateral load
with clamped edge or simply supported edge.

The problem of a circular clamped plate of fexural rigidity D and radius 2 under arbitrary
lateral load p(r, ) reduces to a boundary-value preblem of the following type: to find a
dimensionless deflection function W(x, @) satisfying the differential equation

8? 1 & LNV
Tt et ) V=

and the boundary conditions at x:=1

W=0
o
8x 0.
where, w denoting the deflection,
w ¥ pal
W = . = — =
a ¥ @ 7 D

We expand g(x, @) into series of the form

g = Qo(x) + D 0.,(x) cos mf + > Ru() sin mf,
m= m=1



374 L] B % # 12 &

and write out W(x, 6) also in the form
W = Uy(x) + Z Up(%) cos mz + 2 Vm(x) sin mx .
me=1
We have boundary-value problems of the type:

dl

& L e _m
dx? %
dX
Xen =0, — =0,
=1 dx £=1

Applying the method of finite Hankel transform, we find that

XW(EﬂS,i) = Pm(Em,i) + J:R(Eﬂl,i) A,,. :

Eni £3;

where

_ 1
Xm(é'm.i) = jox X Jm(em,i x) dx ,

- 1
Pﬂl (Eﬂl,i) = jox Pm Jm(sm,i x) dx .

42X . ) ) .
and A, = (—d—xz-l‘- are constants to be determined. By inversion, we obtain
x=1

_ = ﬁm(Em,i) Jm(Em,i x) ~ Jm(ém,t x) o
X"'(x) =2 1“21 Er:,r' [J:n(svn.i)lz + 2 Z Errii J:n(é.mv) ’

. . . . . . X
Obviously the condition X,, =0 is satisfied and to satisfy the condition

¥=1 X lx=1

i
)

implies

- Pﬂl ml)
B RACY)

ot
A, = !

-]

1
2 %3,

=1

Then, we can express the dimensionless deflection W (x. ) in the form

@

_ 0(50 i) Jo(&o,i £) Jo(&o,i %)
Wi 8 "2§ FATACR I A°2 &3 6y T

+2 2 2 5,‘,’{"[’52'251:).)]’ [ém(E'ﬂ") cos mB + R,(&n.) sin m@} +

m=1 i=1

Jn(Em.i %)
+ 2 A, m8 + B,, sin m@ R T RPanat
2‘] ( cos Sn " ) gl m i J (Eﬂl 1)

where

=
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00 (60.) = j; & Qo Jo(&o.i ¢) dx |
@"?(E"’.i) = jo x Qm jm(sm_i x) dx .

Ewn (En.i) = I; % R, Jm(Em.l x) dx .

and
: 5,13,
B = — 2 A )
1

By specifying the load, many problems of interest can be solved, including those considered by H.
Reissner and others.
By the same procedure, the problem of a clamped circular plate under tension and arbitrary
lateral load and that of a simply-supported circular plate can be solved without difficulty.
While considering the problem of a ring-shaped plate under arbitrary lateral load, we use
a different type of finite Hankel transform. 1f f(x) is defined in the interval 1 <2 KA«
(A> 1), the finite Hankel transforms are given by the formulas:

- A
FEm) = { % F2) Sm(Ems 33 R) di

where

Sm(sm,i L A) = Jm(Em,i -'V) Ym(sm.i A) - Ym(Em,r x) Jm(sm,r )\) s

Y, denoting Bessel function of the second kind and of m-th order, £,,; being the ¢ -th root
of the equation

Jou(x) Y, (Ax) = Y,,(x) J..(Ax) .

The application of this type of finite Hankel transform to ring-shaped plate under arbitrary
lateral load is analogous to the case of circular plate, in that some of the boundary conditions

are used after the inversion.



