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S B — TR LIRS, S BERARMENIES: f = Ff(/3), 3L 2 55 Taylor ¥
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;B8R Batchelor #1 Townsend WIEERARTFABI . ABAPTIEEEBE i it O FE 48 12 3
B Ry =5 FpBi4h.

b A e Wi EH r =0 F] oo 4 HIE (2.21) REFEAFERE
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TCHE BB ABH T Chandrasekhar WEEGHFEEZ .
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S AT E TROMLR SR MR . SRR AL T H Fourier 4Hi S REHAY 57 4%
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ERBARRE: P, P Z MK 704 E R R FI'ER) Fourer MAXEM A"



234 )] = 2 *® 13 %

Ri= ||| @ths ko 201 e aky abs aks

. (2.27)
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ARMBEET Mo, BRAMAGBE A ERIR RS (Ry < 5) MGRIUVES 5
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SERMIRIS R ERE P R EIRE » MAHEE U, ZHBRUARERE
Reynolds M7 v fEAI THIEERBR. FHREXASHRE—FARFRIEEREEEE
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: 71"7 (6,; t;;; + @, kru’if) = Qnmi, Um, n + 1711 s
P & R
| , S —— (3.8)
o (@, wrw +® , wywi + @) Wi wy) = bumit Umyn + cin3
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MODERN DEVELOPMENTS IN THE THEORY OF TURBULENCE

Cnaou Prr-vyuan

(Peking University)

ABSTRACT

This is a critical exposition and analysis of the modern developments i the theory of
turbulent motion of an incompressible fluid. We begin with the review of the mixture length
theories based upon Reynolds’ equations of mean motion. Secondly, we analyze the principal
contributions to the theory of homogeneous isotropic turbulence.  Thirdly, we discuss the
treatment of the general turbulent shear flow by means of Reynolds” equations of mean motion
and the dynamical equations of velocity correlations which are derived from the equations of
turbulent velocity fluctuation. We also point out at the same time that although this method
yields theoretical results which are in better agreement with experiment than the results of the
mixture length theories and furthermore the theory also leads to the theoretical distributions of
the mean squares of velocity fluctuation, on account of the presence of the higher order velocity
correlations in the equations, it continuously leads to unclosed systems of differential equations
and hence me:ets difficulties which are difficult to overcome. Therefore, based upon the above
retrospect of the developments of the theory of turbulence and the recent work on the vorticity
structure of the homogeneous isotropic turbulence in its final period of decay, we finally propose
a new approach to the turbulence problem: The basic component motion of turbulence is vortex
motion due to the action of viscosity of the fluid. The dynamical equations which govern the
vortex motion of turbulence are Reynolds’ equations of mean motion and the equations of
velocity fluctuation derived from the Navier-Stokes equations by the averaging process. We
also emphasize the importance of Reynolds’ recognition that the turbulent motion of a fluid can
be separated into the mean motion and fluctuation. The future theoretical investigation is to
look for the vortex motions which are solutions of these two sets of equations. In order to
make the solutions of the problem unique and comparable with experimental measurements,
they should also satisfy statistical conditions on the distribution of vortices analogous to Kol-

mogoroff’s condition in his statistical theory of locally isotropic turbulence at high Reynolds
number turbulent flows,



