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在研究精密电容器的几何尺寸误差引起的电容量误差时
，
在在需在不规则边界的边值条

件下求解拉普拉斯方程
�

这里提供一种解决这类问题的计算方法—
“ 变动边界微扰法” ，

并

给出了微扰过程的收敛条件
�

在此方法的基础上
，
还求出了电极系统有任意变形时电荷量变

化的一般计算公式
�

把这些结果应用于 ����盯�
一

�加���
��
型的计算电容时

，
可以证明关于

这种电容器的一些普遍性质
�

变动边界微扰法

在设计精密电容器时
，
常会遇到这样一类问题� 实际上能加工出来的电极往往和设

计的理想几何形状有一些差别
，
因而带来了电容量误差

�

我们希望能计算出这种误差
�

在数学上
，
这种误差计算相当于求解边界发生某种变形

时的拉氏方程狄义赫利问题的解
�

一般说来
，
要求出边界有

任意不规则变形时的解答是相当困难的
�

但是我们可以注意

到这样的情况� 电极的理想几何形状在往是较为规则的
，
比

较容易求得电位函数的解
�

如果能够把变形后的电位函数用

变形前的电位函数的某种展开式表示出来
，

问题就可以解决
、

这就是所要介绍的
“
变动边界微扰法，’�

为了叙述清楚
，
我们先从形式上推导出所需的计算公式

，

以后再给出关于收敛性的证明
�

一 二二二二 尹

设在三维空间中有一个域 岛
，

其边界为��
�

�。
上定义了一个有界函数 ������

�

对
。

为 �。
上的变点

�

假定对应于边值 ����
。
�的 岛 域内的拉氏方程狄义赫利内问题可以求

解
，

其解为调和函数 物����
�

�� 为 马域内的变点
�

现令 �。
上的各点作一微小位移 ��

�

位移后 �
。
移到对应点 � 处

�

氏
，。
表示 �

。
点

的位移向量
�

假定位移后的各点构成一连续闭曲面 �，
所包围的域为 口

，

并假定在位移

时对应点上定义的函数值不变
，
这样就可得到一个对应于 �上的边值条件的口域中的拉

� ��丁�年 �月�� 日收到
�
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氏方程狄义赫利内间题的解 甲���
�

� 为 。 域内的变点
�

口和 夕
。
域可能是相互交错的

，

即 口
。

域有一部分不包括在 口域中
�

为了便于进一步

研究
，

我们对调和函数 甲���用幂级数作解析延拓
�

‘

利用多元复
几

变函数的理论
，
和二维

情形相似
，

可以证明这种延拓的唯一性
�

假设延拓后的口域包括了闭域 乌 十 几 的全

部
�

现在可以以 �。
上的任意点 �

。
为中心把函数 甲展成幂级数

，

这样 甲在 �上的值可表

示为

“ 码 一 ，�、 卜 夕吓理军醉
，

妥二几 友� ��机
��

�

��

其中几
。

表示位移向量 气
，�，
的模

�

伊甲�口占氮 表示 氏
。
方向上的第 反阶方向导数

�

前面已假定在边界移动时对应点上定义的函数值不变
，

即有

���
。
�� 甲���

�

因而 ��
，

�� 式成为

��
�

��

甲�“ 。，一 ‘。�� 。，一
客箭

。 趁甲��
。

�
口占备

。 ��
�

��

引人函数 △甲����， 其定义为
△甲����� 甲����一 叭�从�

�

△甲����为两个调和函数之差 ，
它也是个调和函数

�

设它在边界 �。 上的值为

则

��
�

��

△��� 。
�

，

△��� 。
�一 ，����一 ����

。
�尸 一

夕哄旦性丝叫
�

妥二几 左� ��’ 益
�

显然 △了���� 仍是个未知函数 �

现在我们用和它相近的已知函数代替它
�

作一个以 �。
上的点为变点的函数 人��办

，
其定义为

��
�

��

为此
，

可

‘��“ 。，
一

“ ·

恕黔
�

��
�

��

由于 伞。
只定义在 口。

域内
，

所以 ��
�

‘�式中的方向导数是指从 岛 内部的点逼近 �。
时

甲。
的方向导数的极限值�以下推导类同�

�

当 甲����� 和 �
、 。

已知时
，
��

�

��式表示一个定义在 ��上的已知函数
�

如以 人����

为边值条件
，
又可得到一个 口

。
内拉氏方程狄义赫利内间题的解 甲 ‘

����
�

这个调和函数

实际上就是在一级近似中由 ��
�

叻 式定义的调和函数 △甲�风� 的近似值 �

为了说明这

一点
，

可以再令

△知����� △甲�从�一 叭����� �
�

��

然后求调和函数 △�甲����在边界 几 上的值 △������

这只需把�
�

��式代人 ��
�

力

式的右边
，

△��八�。�一女脸处赵卫立 一 女
一

瑰
之写 友� �舀备

。
之或 左�

。牛△甲��，乏
口占备

，

一 ，、 ���一 交咚
石不 代�

。 友甲。
�对

。
�

�

口吞备
。

一
全冬

·

魂二 � 气�

夕
七些匹卫

，�
·

�暇
。 ��

�

��
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把 ��
�

�� 和 ��
�

��式相比较
，

就得

△������一 一 艺
�

勺决甲
。
���

。

��
口路

。

逻
， 公七

谷箭
‘ 。 “△试������

口硫
。 ��

�

��硫一如

当 氏
。

很小时
，
由 ����式给出的 △甲��户 也是 个‘

小 量
�

因而 △我� 。
�的 表 达

式中只包括了二阶以上的小量
�

由调和函数的极值原理
，

可从 ����和 ����式推 知
，

△�����和 甲�

��
。
�只差一个二阶小量

，
因此 ��‘

���� 可以取作 △甲�从�的近似值 �

下面再进行二级近似
�

同样可以作函数

����
。
�
一 女脸

�

“协�了巧，
�

不二 左� 口吞丸
。

并设对应于边值条件 九��
。
�的 岛 域内拉氏方程狄义赫利内问题的解为 私��办

，

��
�

��式
，

再令

△�甲����� △，甲��
。
�一 甲�

����
�

把 ��
�

��式代人 ��
�

��式右边的第二项
，
就可以相似地求得 △�甲����在 ��

△丫�对 。
��

��
�

���

参艇

��
�

��
�

�

上的值

△丫����
一 艺 艺压型生乏创迹公 一 食压翌全生处公

�

左� �占备
。

之或 友� �占备
。 ��

�

���

显然
， △�

���
。
�的表达式中只包含了三阶以上的小量

�

把此过程一直做下去
，
可以得到

甲��
。
�� 甲�����十 △甲�从�
一 物�从�� 切�

����十 △�甲����

。 甲。
��

。
�� 甲�

��
。
�� 甲�

��
。
�� △，甲����

一 甲。
�、

。
�� 艺

‘。 。

��
。
�� △一�，，�、

。
�

，

��
�

���

其中各 甲
。

�从�均为调和函数
，
它们在 ��上的边值为

￡ � � ， 、 �

小 硫
。

伊叭
一
式斌�

尹关�办 一 一 》 丫里丝三
·
上二竺上竺之二二生‘

之或 左� 口占氛

余项 △” ��甲�从�也是调和函数
，

在 �。 上的边值为

�
，
�… ��

�

���

△” 十

叹 。了。�
一 艺 艺 ��

�

���
�二 � 人 ‘ �

噬坐卫
竺

址迎业 一 女巫旦生丝生�上�应
�

友� ��孟
。

之或 左� �占备
。

当 华
。

��
。
�和 �

，，�，
已知时

，

可以从 ����式求得 �
�

��
。
�及 相应 的 甲，

�叮
。
�

，

再从

��
，

�的 式由 物�从�和 哟�矶�求得 �
�

���� 及 朴����
�

这样一直做下去
，

就可以求出

所有的 叭�刀办
， 。

一 �
，
�

，
�

一
如果级数 艺 ，�

�从�收敛
，

并且 五�△“
袱从�一 。 ，

我们所作的微扰过程就是收敛

的
�

未知函数 甲�从�就由 ��
一

���式表示成一系列已知函数之和
，
原来的问题就解决了

�

在附录中我们给出了关于微扰过程收敛的充分条件及相应的证明
�
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由 ��
�

�斗�及 ��
�

�，�式可以看到
， 甲

。

��
。
�是

。
阶小量

，
而 △，�，甲��

。
�只包括， � �

阶以上的小量
�

因此
，

��
�

‘��式中的 万 甲
。
项直接表示精确到 �阶小量时由于边界变动

而使 物�从�产生的误差
�

这对实际计算误差是很方便的
�

由于误差量本身一般说来并

不要求计算到很高的精度
，
通常只作一两次微扰就足够了

� ‘

二
、

接入定压源的电极系统发生微小变形时

电荷量变化的计算公式

上节给出的方法
，

可以计算边界发生微小变形时空间各点的电位函数的变化量
�

计

算时需求解一系列边值问题
�

但在实际计算精密电容器的误差时
，

并不需要知道空间各

点电位函数的全部情况
，
只要求得电极上的电荷量的变化就可以了

�

下面给出一个计算

电极系统发生微小变形时电荷量的变化公式
�

它仅对一阶近似成立
，
但计算起来简便得

多
�

定理一 �个导体组成电极系统
，
设各电极表面发生了任意的微小变形

，
而电位保持

不变
，
则在一阶近似中各电极的电荷量的变化为

匈
，一

铆
“�式 ·

占，�式
， ·

���
犷� �

，
�，�

，

…�
�

��
�

��

这里 �况
，

式
，

式
�
均为变形前的电极系统的物理量

，

��� 为第 夕个电极表面的向量面积

元
，
指向外法线方向

，

式 为该电极表面的电场强度
，

式
，
为第 �个电极加单位电位而其他

电极均接地时第 了个电极表面的电场强度
，

祝为电极表面变形时的位移向量
�

证明 我们来考虑第 云个电极上电荷量的变化
�

先令 �，二 �
�

按 �� ��一��
�

��式
，
在一阶近似中第 声个电极 。 污 �表面的变形等

效于在未变形的电极表面上加上了附加电位

�朴��� 一吞
·

�甲甲
。
�
�� 式

·

祝
�

�����

面积元 ��，上的附加电位在第 �个电极上引起的附加感应电荷量为

�。 ，�� 一�甲
�

�
，‘ �，�� 一�式

·

占
，
�寸�

，，，
��

�

��

�几
�
为 ��，对第 �个电极的部分电容量

�

为了求出 ��，，， 我们在第 滚个电极上加单位电

位而把其他电极均接地
，
此时 �凡上的电荷量应为

���
�� 。

式
�

·

�况� 一��。

个电极上电荷量的变化为

��
�

斗�

由 ��
�

��和 �����式就得到第 �

△公一
寡勿

式
·

�����，
·

��� ��
�

��

再假设 �，钾 。 而 祝二 � ��钾 口
�

此时

�，、，� �甲
�

�
，��，，� �双

·

占、���
，，，

��
�

��

�句
�
表示 ��

�
对除第 �个电极以外的所有其他电极的部分电容

�

当第 �个电极加单位电

位而其他电极均接地时显然有



张钟华� 变动边界微扰法及其对精密电容器误差计算的应用

由 ��
�

��和 ��
�

��式就得到第

△砂

刁��、 � ￡
式

， ·

�戈
�

�个导体的电荷量由于变形 �
，
而弓�起的变化为

一

价��，
·

‘
抵

， ·

���
人亩

��
�

��

��
、

��

由于一阶近似中可以利用叠加原理
，

把 ��
�

分 和 ��
�

幻 式相加就得到 �
�

�� 式
�

证

毕
�

可以看到
，
按 ��

�

��式
，
如果我们对未变形的电极系统求出了 式 和 式

、 ，
任意变形引

起的电荷量变化可用积分求出
，
无需再求解边值间题

�

计算比较方便
�

��
�

��式的物理意

义也较明显
�

三
、

对 �������
·

�������� 型计算电容的应用

把 ��
·

��式应用于 �������
一

��������

的一些普遍性质
�

这里仅举两个例子
�

型的计算电容时 ‘，，， 可以证明关于这种电容器

�

人

先证明一个关于这种电容器的电极发生任意

微小变形时电容量变化的定理
�

定理二 设有一无限长的 �������
一

��������

型计算电容
，
其截面为一任意闭曲线

，
四个绝缘气

隙把柱壳分成了四块电极
�

电容器的轴向坐标为

名
�

现设各电极发生了任意的微小变形 占
，

则
“
交

又电容量
” �，

和 ��由于变形 吕而引起的变化量
，

在一阶近似中
，
就等于电极发生了二度的

“
轴向平均变形

” �时的变化量
�

占的定义为

�� 五� 生
与， 。 �。

��之
。

��
�

��

乙
。
表示电容器的轴向长度

，

如果变形前 ��

� ��
，

则变形后平均电容量 云

不变
�

一李��
，
� 。 �在一阶近似中仍保持

�

证明 先研究 �，
的变化

�

设此时电极 �作为指零极
�

高压极 �加上单位电位
�

按 ��
�

��式
，

此时 �
�

的变化量为
。 ·�

� �△枷
一刻研

·

�����
� ‘

截 ��
�

��

此式中的面积分是沿着未变形的柱壳表面进行的
�

这样的积分可以分解为沿着截面周线

上的线元 �� 的积分和沿着
万
方向的积分

�

由于式
，

式
。
都属于未变形时的物理量

，
与 君

无关
�

再考虑到 ��
�

��式的定义
，
就可以把 ��

�

��式写为

川艺一△��

�
。�式

一

气�式
， ·

�况
�

��
、

��
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此式正好就表示电极发生了与
二 无关的二度轴向平均变形 �时 �，

的变化量
。

对 ��

也可进行类似的证明而得到同样的结论
�

由于�与
“
无关

，
所以如变形前 �，

� 仇
，
利用文献 ��� 中已证明过的结论可知

，

平

均电容量在一阶近似中是保持不变的
�

这个定理的主要作用是把文献 ��� 中关于二度场证明过的结论推广到了三维的微小

变形的情形
�

文献���中对
“
可动屏蔽

” 型的计算电容进行了较详细的实验研究
，
发现这种电容器的

精度主要取决于端部效应引起的附加长度 △� 能否在两次测量过程中精确相等 �

由于

△� 与电极间距离 �
有关

，
所以对电极系统的平行性及直线性提出了很高的要求

�

下面我们给出一个把 ��
�

��式应用到
“
可动屏蔽 ” 型的计算电容时得到的结果

�

利用 ��
�

��式及电极系统的对称性可以证明
，
在一阶近似中

， △� 只和两个交叉电容
的极间距离

。
和 �的平均值 �有关

，
即有

△� 一 、
�

�
�
�� 。

�三二竺丫� …
� � � �

��
�

��

此式的证明过程极为简单
，
故不再写出

�

��
�

��式可在实际设计中加以应用
�

例如可

以在移动屏蔽杆上装上一个绝缘的
“
指零环

” ，
作为电容传感器

�

指零环对四个主电极的

电容量之和就反映了 �的变化
�

如求得了��
�

劝式中的系数
，
就可以利用所得的关于 �的

数据进行修正
，
以提高电容量的精度

，

对方形截面的
“
可动屏蔽

”
型计算电容

，
我们已利用��

�

�� 式求出了 ��
�

�式中两个系

数 � 和 �的解析表达式

� � 卫互一
护 �� �
夕一一，奥共空粤仁，二二一

。 �

������，

若 又�
”
一 �，‘

�阴
‘

十 又�” 一 ’夕
‘

�付
‘
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