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FEYNMAN'S PATH-INTEGRAL METHOD AND HAWKING
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Though there are various methods in deriving the Hawking evaporation formula, but
all of them depend on explicit forms of the space-time metrics. Not long ago, we have
put forward a conjecture. ‘‘Independent of the explicit forms of space-time metrics,
every static or stationary space-time with furture horizon must have Hawking evapora-

tion.”’
Now in this paper, we give a full proof of this conjecture.



