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REDUCTION OF DISLOCATIONS IN LPE LAYERS
DUE TO THE ACTION OF THERMAL STRESSES

Tu XIANG-ZHONG

(Institute of Semiconductors, Academia Sinica)

ABSTRACT

We present here a model of the reduction of dislocations in LPE layers by the
formation of (110) oriented interfacial dislocations parallel to the surface of the sub-
strate due to the glide motion of substrate threading dislocations whieh is drived by
the thermal stress produced by a temperature difference. In the temprature gradient
LPE under a steady natural convection flow, there is a temperature difference across
the thickness of the substrate. The temperature difference can cause a thermal shear
stress in the fixed substrate. Thick GaAs and Ga;-.Al:As (z < 0.3) layers were
grown on (100) GaAs substrates. The estimated value of the thermal stress is slightly
greater than the critical resolved shear stress for the formation of (110) oriented
dark line defects. The observation of subface etch pits shows that the epitaxial layers
bhave lower dislocation densities than that of the substrates or are even dislocation-free,
The observations of interfacial etch grooves and cathodoluminescence show that sub-
strate threading dislocations bent so that segments run along the interface and a in-
terfacial dislocation network is formed. The transmission electron microscopy observa-
tion shows that the majority of these interfacial dislocations are 60° type dislceations
and the minority are Lomer dislocations. It implies that it is possible to eliminate all
substrate threading dislocations with the introduction of interfacial dislocations by
thermal shear stress.



