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ABSTRACT

It is shown that the algebra valued by the generalized Lax representation of mnonli-
near (evolution) system, i.e. the prolongation algebra & XD(4), is in fact Kac-Moody
type algebra where @&/ is a finite dimensional Lie algebra and D(A) the domain of value
of the spectral parameter A. The realization of the Kac-Moody algebra in a kind of 2
dimensional nonlinear (evolution) systems has been given by means of the realization of
the Kac-Moody algebra in the principal chiral model due to Dolan.



