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RE. BRSNS K EZF I LA 726 S B 80K, MAE NER S RANE RS
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Rayleigh B 5EWHF A T e A R AR M 19 &, ML 20 TR M, 5 B T B IR 3 3 5 AR 31
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5M& Reynolds 8 Ro=rQpd/v, O 1 O R R AN AEE, v BB R .
Navier-Stokes 77 f2 fliE &M B FE 0 B ik

u, = vVZu—(u-V)u—lpr,
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HAf p= 0/ O BV LA R T7 A BER B, BL Ry >0 1 Ry <0, 768 & O & B0 17 1l

] R R
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fE— GO LT, 16 4E G R AR 0 B 0 TS
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Hop
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B, WA TEY BOT . M RE IR ) e LA,
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Hf LARBHEMARBR . AG)AMB)XEH .
2 2 r2n i 4 _
[m(n&— Rz)] [?_1}_(L) = 0. (9)
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K. (HRAETHE—MFESH L TUEBEEREES T, E48EER(R,=0)
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HHE B 3 Fr s . SR HE R I MR BE -Taylor ¥ 1 Taylor IRX =M RBEENIEEESR
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B &HEE Q0 B uifﬁ&, 7N JE 4% % 4 Navier-Stokes FRRMEL K FRATEREEATR
w=Ve-R(u-V)u-Vp, V-u=y, (A1)
Hp wfl p FEHEERNENY, ADXBERRDR .
u. =(0, v(r),0), p= plr), wlr)= A+ B/r,
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Hb g=r/r p= @/ Q. EFHZ—RARSEFTRE, RNESEURIH®D, ERZBHRARFT—HRDH. W
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u=u+u, p=p+p, (A3)
RATRY(ALD, = o 1 p HREGTBRANBLT, RFT o’ W p HEMIH TR, ERZMPEREIH ML
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w=V:u— 2 (%) vg— P+ 2C(r)v— C(r) ug

e v 3o (3] (H]mezoe- oo
w, = V2 w— p,— C(r) wy
u, + (%)u+ (%)'De"‘ w, =0,
HARH C(nft DR
D=- RiA= (3R - R)/(1+ 7,

_ _ 7(Ri — 7Ry)
C(r) =R(A+ B/#) = D+(1_n)(1_nz)',, (A5)

(AT E IR T (AN B IR € XM E R [E, TR
u = U(r)exp[i( kz+ m8) + At],
v = V(r)exp[i( kz + m8) + At],

w = W( r)epr:i( kz + % + m@) + )Lt:|,

p = P(r)expli( kz+ m#) + atl. (A6)
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Hep ARRIGUEE, TRARE M m SRR A M F A AL, m o7 LB T (0 #R50) 3 E ¥ 3 (k4
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Wy TR

W= U+ /DU -[A+ @D/ A+ BlU+2C(r) V- P —im[(2/ ) V+ C(r) U],

AWV= V+ U/ DV - [+ m®)/ A+ BBIV+2DU- (im/ ) P+im[(2/#) U= C(r) V].

AW= W+ /)W - (m¥/ P+ B)W- kP—imC(r) W,

U+ (1/r)U+ (im/r) V- EW = 0. (A7)
HeH—#MErd r KEH.EHERANBOEXTHEE
X=U+{/rnU-P, (A8)

THUMADR T HEES P.IIAEE
Y=V+1/nV, Z=W. (A9)
BADRA— N E RS TR
U=-(1/HU+ kW-(im/r) V,
V=-(1/nV+Y,

W =2z,
X =AU+ (¥ A+ BYU-2C(r) V+im[(2/A)V+ C(r) U],

2 —
Y =av+ (2%+ kz) V—2DU+im(72U+ C(rn v+ Tkw—lrx ,

2
Z' =AW+ (%+2k2) W-(1/rZ-kX+im[—(k/r)V+ C(r)W]. (A10)

WRE B REMH
U=V=W=0, ZEr=q90-1p, 1/1A-9y. (Al1)

AT HERPURELE, RNMAFTEERHEE =0 =i AER) FEARNENBAEAREAR S IHMER.
m=0, RV B AR B AT, BE 1=0; m>0, WA MWE AR B H (M), 4 x=in, XE o RET LA
BOE . AR AT 8 R IR ML E ) B H Newton-Fox B i, X FEEMERL EH, WA RRE ZHEESH
BREFRME R X RRAMERE. BN m AT KRB Ry W5 FE, 5868 MR E i 2 1 i 5
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ABSTRACT

Circular Couette System has served as a paradigm for studying complex transitions to turbu-
lence, the influence of finite geometry on pattern-selection mechanisms. In this paper stability of a
circular Couette system with the intermediate radius ratio is investigated through laboratory experi-
ments and computer simulation. The classical Rayleigh centrifugal instability theory is extended to
general viscous, incompressible fluid between concentric independently rotating cylinders. A criterion
of stability is formulated to quantitatively determine the stability boundary. The laboratory experi-
ments employ the techniques of the laser light scattering and the flow visualization. The apparatus has
a radius ratio of 7=0.699 and an aspect ratio of I'=18. A striking feature in phase diagram of flow
states is the novel primary instability ; when the outer cylinder is at rest, or counterrotating, instability
occurs first for nonzero azimuthal wave number. Instead of time-independent Taylor vortex flow, the
resulting flow is spiral vortices which are traveling waves in both the axial and azimuthal directions.
Preliminary experimental measurements of transition Reynolds numbers presented here are in agree-
ment with those obtained numerically. Laboratory and numerical experiments have revealed the ef-

fects of radius ratio on pattern formation, the sequence of transitions.
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