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ABSTRACT
The dependence of the probability of the supercooled water freezing from homogeneous nucleation on the volume
time and temperature was deduced based on thé' continuum” model of water structure put forward by Stanley and Teix-
eira. The homogeneous nucleation rate of supercooled water freezing was then calculated. The results agreed with the ex-
perimental measurements. The calculation of the pre-exponential factor which is a key for the classical nucleation theory

and the density functional method is not needed for this method.
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