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讨论常微分方程系统李雅普诺夫特性指数的一些基本问题，包括数值计算技术和常微分方程系统任何平衡点

以外极限集的李雅普诺夫指数必有一个为零的结论+给出超混沌吸引子必超出)维的结论，指出基于常微分方程
求解李雅普诺夫指数的-./0程序使用中初值的选取对结果的影响+同时提出一种简便可行的计算条件李雅普诺
夫指数方法+通过数值研究一些重要模型进一步说明本文的观点及提出的方法+对常微分方程系统任何平衡点以
外极限集的李雅普诺夫指数必有一个为零的结论进行了讨论，可以作为分析结果和计算方法的有利工具，在一些

工作中被忽视+

!"##：$*%*

# 引 言

李雅普诺夫特性指数（123）是对平衡点处特征
值概念的推广+利用它可以数值判定系统概周期及
混沌行为［#，(］+对于!维相空间有!个123度量初
始单位椭球!个轴拉伸和压缩的程度+许多系统，
在一个轴上的拉伸意味着一个正123+然而，另一
些系统在动力学演化中存在两个或两个以上拉伸的

轴，结果导致两个或两个以上正123+这样的系统
称为超混沌系统+条件123用来判定被某一变量驱
动的系统与原系统的同步稳定性+某系统的子系统
的全部条件123为负保证其复制系统（接收器）在
驱动变量作用下与原系统（发送器）达到同步+

( 非线性常微分方程系统123性质
及其求解的讨论

求解系统的123可以更好地认识系统的本
质［#］+-./0等提出基于2456789:6;<=正交化的求
解方法［)］+一种更有效且数值稳定的方法由>4?6?@
等给出［%］，同时给出几种求解方法比较全面的比

较+他们的方法是基于分解系统在切空间的A59.7
B;5@矩阵为正交阵" 和包含正对角元素的上三解

阵#+这样的分解可以通过用C456789:6;<=（C8）
正交化（或修正C8（DC8），重正交C8（EC8））或所
谓的"# 分解方法及其修正方法，其中一种利用

F.GH?:./<?4变换的修正方法（FIE）相当于C;J?@H
旋转更为有效+
K54L?4和2:G5（蔡少堂）在文献［#］中给出证明

（源于F5L?@［#&,)］），对于除平衡点以外任何极限
集，三维及三维以上常微系统必有一个零123+只
要看到非线性方程的一个解$（%），其时间导数

$·（%）就是对应的线性伴随方程&·M’"$（%）&的一个

解+对极限环或混沌吸引子来说$·（%）都是有限的+
因此$·（%）作为伴随方程的一支解，这时一个123
为零+注意到，混沌系统必至少有一个零123和一
个正123，且全部123之和小于零，显然一个常微
分方程系统的奇怪吸引子必有至少三个123，又由
于超混沌系统必有至少两个正123，所以超混沌系
统有至少四个123，再利用N5O/5@7P.4L?关于吸引
子123和分形维数的猜想，超混沌奇怪吸引子分形
维必超出三维空间+
为了达到稳态在计算过程中通常由任取初值开

始并舍掉大量的过渡结果+本文在计算中，初值的确
定都是任取的，然后经足够长的独立的演化过程得

到的末状态值再作为初值+计算123采用了 -./0
提出的程序［)］+但是原程序中没有指出初值的选
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取!任取初值开始"#$%程序直接计算&’(，对收敛
有很大影响!因为由&’(的理论计算公式，计算必
须在吸引子轨道上进行，如果初值不在吸引子轨道

上，开始的一段过渡过程，作用在)*+#,-*.矩阵上，
将对最终结果的收敛造成影响!忽视了这一点，可能
造成舍掉的一段过渡过程中初始设定好的单位阵始

终在进行演化!当计算&’(的实质性步骤开始时，
单位阵已经面目全非!一种修正方法是使单位阵在
实质性步骤开始时重新设置!另一种即本文采用的
方法，先取初值，计算&’(都要多次，前一次的末状
态值做为下一次的初值!这种方法在&#/0.1系统及
超混沌2344$0/系统的计算中得到证实!这里给出

&#/0.1系统的计算结果，初值（567899:，;<!=<:<8，

75!57;:5）是经过计算并抛弃瞬态得到的!利用四阶

2>.?0@A>BB*算法，定步长=!=;，总步数为7====，得
到&’(为7!;95==，C=!===:;，C87!<98DD，已经
相当理想!如果总步数为7D===，前D===为过渡过
程舍掉，此时单位阵已经被修改，得到 &’(为

76;9:=，=!78;9，C7D!:8DD!尤其为零的&’(受到
严重影响!当总步数达到E=D===，才能得到&’(为

76;99E:，=!==:<:，C87!7D7D=，较为理想!因此可
见，计算&’(要保证初值选取的质量，实质性计算
开始时要设置单位阵，否则对收敛影响严重!

8 条件&’(及其简便计算方法

条件&’(在理论定义上及其求解与&’(并无
本质差异!通过分析我们给出对"#$%程序进行小改
动，来求解条件&’(的方法，即在每一步设驱动变
量对应的)*+#,-*.阵的一行一列元素为零，并且不
但适用于连续驱动同步方式下求解条件&’(，而且
适用于离散驱动同步和断续驱动同步方式，只要在

驱动时刻（驱动系统与接收系统在该时刻耦合），置

零)*+#,-*.阵对应一行一列即可!
计算响应动力系统条件&’(的算法（基于!"

分解来说明）

初始化

初始!为单位阵
初始&’(F0+B#/为零向量

%#/#G;B#$C-B0/*B-#.4
计算)*+#,-*.阵%#
设置驱动信号对应的一行一列元素为零!
&G%#!

计算!"分解#%&（!"G&）

&’(F0+B#/G&’(F0+B#/H$#?（I-*?（!"!））
结束

&’(F0+B#/G&’(F0+B#/／$C-B0/*B-#.4!
该算法已成功用于连续及离散驱动等方式的同

步!对于诸如&#/0.1和2344$0/等系统的计算结果
与经典结果吻合!这种方法非常简单有效!本文计算
条件&’(时采用!

< 模型研究

!"# 超混沌$%&&’()系统的研究

超混沌2344$0/系统模型［D］为

’·()*)+，

*·(’,=-7D*,.，

+·(8,’+，

.·()=-D+,=-=D.-

（;）

用四阶2>.?0@A>BB*积分该方程，定步长为

=6=;，初值为C;E!ED=8，C75!D=;8，=!;<E8，

8=6;<7E!&’(结果为=!;::9，=!=8=D，C=!==7<，

C8:6=558，与经典结果吻合，说明计算程序可靠!条
件&’(如表;!

表; 超混沌2344$0/系统条件&’(计算结果

驱动变量为 条件&’(

’ =!8:DDE，=!=<<7;，C89!577;;

* =!=:<==，C=!7;8<5，C89!:=<E=

+ =!;9955，=!;9859，=!=E87:

. =!;7<==，=!====5，C89!9:797

表;的计算结果表明：复制的超混沌2344$0/系
统不能被单一变量驱动达到与原系统的同步（没有

一组条件&’(全部为负）!尤其是+对应的条件

&’(反而全部为正，因此+变量是最不稳定的，可
能与非线性项出现在+对应方程中有关!

!!* 心脏@血液耦合动力学方程的研究

一种心脏@血液耦合动力系统混沌同步模型［9］，
由心脏自持张弛振荡、血液在心脏内的流体动力学

和窦房结自律性振动三部分相互耦合，其基本方程

是:维非线性系统，即

I’;／I/(0’7)0’;,&’<，

I’7／I/(1’;)’7)’;’8，
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!!"／!"#!#!$$%!"，

!!%／!"#&#!&’&$!%$&"!"%’(!’，

!!&／!"#$&#!%’)!#，

!!(／!"#&)!’’&*)!($(*)+#)%!"(’,!#，

!!’／!"#$&)!($(!%* （$）

式中符号的物理意义见文献［(］*由于将心脏自持振
荡、心脏内血液流动和窦房结自律振动三者有机地

结合，从功能上体现"个子系统的相互作用，用高维
混沌同步模型逼近右心和左心的协调动作及其同步

化，比简单模型更合理*数值模拟与正常人的+,-
在形态上相似，具有一定生物学意义*但原文在

.,+计算上存在问题（计算方法、结果，例如吸引子
维数(*/0）*下面给出本文的计算结果*
参数-1#(2)，.1%&2/$，/1&2)保持不变*

计算总步数0)万，计算步长)2))$，采用四阶

34567894::;算法积分*
当参数 %1%2)，&)1#)2)，&#1"2%，&$1

()2)，&"1#$2)<#)&，(1#2&，)1)2)#$，,1
)2)#$，计算得出系统是混沌的，.,+为$2#($，

=)2))(%， =)2#’/， =’2/(&#， =$(2/0’#，

="/2))%&，=/$2’/("*
当参数%1)2$&，&)1/20，&#1"2%，&$1

#02)，&"1(2)<#)&，(1#2&，)1)2)#$，,1
)2)#$，计算得出系统状态是极限环，.,+ 为

)2))%"，=)2%)%#，=#2))$，=%20’#&，=##2)()/，

=$%2’)(’，="%20/(&*
当参数%1%2)，&)1#)2)，&#1"2%，&$1

#02)，&"1#$2)<#)&，(1#2&，)1)2)#$，,1
)2)#$，计算得出系统是混沌的，.,+为$2#(/0，

=)2))(’，=)2&’"#，=02)$$$，=$02&"%&，

=%)2#"/#，=#)&2(/)(*第二个.,+可看作零，存
在一个正.,+*此时条件.,+（!#为驱动变量）得
出=)2&0)’，="2%##"，="2(("0，=02)$#%，

="(2"/’"，=#)&2&)’)，全部为负，两系统可以达
到同步*
当参数%1)2$&，&)1#)2)，&#1"2%，&$1

#02)，&"1(2)<#)&，(1#2&，)1)2)#$，,1
)2)#$，计 算 得 出 .,+ 为 )2))/$， =)2%)&，

=#2))(， =%2)#$&， =#)2)"’%， =$%2(%&$，

="$2$%($*此时，系统状态是极限环*
当参数%1)2$&，&)1/20或#)2)，&#1"2%，

&$1()2)，&"1(2)<#)&，(1#2&，)1)2)#$，

,1)2)#$，计算得出)*)#$，=)*)&#，=)*"&#，

=%2%’&0，=##2’/$"，=$%2&/#$，="%2’%#)或

)*)"$， =)*))0/， =)*&)’， ="2$0#"，

=#)2"(’&$，=$&2)0/’，="%2""0$*此时系统状
态可能是两个零的情况，并不十分确定*
系统的状态不易判定.,+为正为零的个数*可

能与系统极不稳定及算法不适用有关，有待进一步

研究*
综上，计算利用 >?@A程序，初值的选取都是经

过多次、长时间的检验，结果为得到的稳态值*在心
脏0血液耦合动力系统模型中发现了混沌，给出不同
情况下条件.,+的值*当系统是超混沌的，通常难
以使用单变量驱动达到同步*当系统是混沌的，同步
或不同步两种情况都存在*

!"# 复数$%&’()*+,-’(系统模型的研究

本节研究复数.?B75C8D;E75系统（,.D+），其
可以描述激光系统通过D?FA分岔导致不稳定性，即
经过D?FA分岔走向混沌及超混沌*方程经过变量变
换变成四变量的自治动力学方程［’］为

!!#／!"#$1!#’1!$，

!!$／!"#2#!#$!$$3!"’1!$"／!#$!#!%，

!!"／!"#2$!#’3!$$!"$1!$!"／!#，

!!%／!"#$4!%’!#!$*
（"）

积分采用四阶34567894::;算法，定步长为

)2))#*不同系统参数下的计算结果如表$*
表$ ,.D+系统的.,+计算结果

参数 .,+的计算结果 状态

51(2)，2#1%"2"，2$1=)2&，

41)20，31$2&

)2()#)，)2))")，

=#)2#)’/，=##20%%0
混沌

51%2)，2#1#0#2"，

2$1=#2&，41)2&，31$2&
)2)))#，=)2(/$’，

=(20$&0，=’2(%$/
极限环

51(2)，2#1/#2)，

2$1=#2&，41#2$，31$2&
)2/#)(，)2)))’，

=#)2)’&0，=#$2’’0%
混沌

每一组均包含明显的零.,+*这个模型再次验
证了D;E75，G;BE7B和 ,H4;等关于零.,+的结
论*文献［’］的结果，忽略了这一点，认为该系统状态
在以上参数下为超混沌的，并对其进行同步控制，结

论是超混沌在某些情况下是可以通过单量驱动达到

同步的*条件.,+通过本文给出的简便求解方法不
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难给出!我们已验证其不是超混沌的，结果符合已有
理论!

!"! 五维对流模型的研究

本节讨论五维大气对流非线性动力系统模

型［"］，系统方程为

#"$／##$$%"$%"%%／%，

#"%／##$（&’"$%!%）"%&"(，

#")／##$$%")%’"%"(／%，

#"(／##$(（")%!）"%%!%"(%!"%"*，

#"*／##$%(!%"*&!&’"%"(／%!
（(）

总步数*+++++以及步长+,++*，积分采用四阶

&-./’01-223算法!
当 &’4%*，&54+,%*，初值为 +,676)(，

8+,++$(6，$,+9)7)，+,+$)+(，8+,++++%，:;<为

+,+9"+， +,+++6， 8),$%6%， 8),9))(，

8*6,"696，系统是混沌的（一个正:;<和一个零

:;<）!当&’4%*，&54+,%9，:;<为8+,+++6*，

8+,+7+7*，8%,66$*7，8),77++)，8*6,"7)))，
系统状态为极限环!每一组:;<都有明显的零

:;<!系统状态可以确定!
在另外一些参数情况下［9］，只发现了不动点!

当&’4%*，&54+,$+，:;<为8+,7$+7，8+,7$$)，

8",%)97，8",%(%*，8*6,$"+9；当&’4*+，&54
+,+*，:;<为8+,7$"6，8+,7%+*，8)$,6+6$，

8)$,6+6*，8*6,7)"6；当 &’4*+，&54+,$"，

:;<= 为 8+,7$)9， 8+,7$*9， 8)$,6+%7，

8)$,6+))，8*6,7)9+；当&’4*+，&54+,%%，:;<
为8+,7$%7，8+,7$($，8)$,6+$)，8)$,6+%6，

8*6,7)9$!
全部结果:;<都服从>3?’.，@3A?’A和;B-3

的结论，即至少一个明显的零:;<!文献［9］的结论
可能没有收敛，与计算总步数过少有关（几千步）!

* 结论和讨论

平衡点以外的极限集不具有任何零:;<的情
况是否存在呢？虽然文献［9］给出了五维对流非线
性动力系统的结果存在这种情况，但其结果可能还

没有收敛!我们的结果说明该模型在相同参数下符
合零指数的结论!但是在心脏0血液动力耦合动力系
统的研究中，我们也发现这种不存在零:;<的情

况!我们作了大量的反复验证，尽管如此，这种情况
很可能仍然是$）算法的问题，%）方程具有刚性，)）
系统在这种情况下极不稳定!我们也仔细推敲了零
指数的证明，其主要的思想是，在吸引子一段轨道上

取相邻很近（前后关系）的两点，在演化过程中，这两

点的距离将保持近似不变，既不指数发散也不收缩，

而该方向将是切空间中的一个独立方向，这将导致

一个零:;<!另外，在对复数:CA’.D0>3?’.系统的
计算中发现，结果包含零:;<，而文献［7］的结果不
包含零:;<，所以本文结果是正确的!本文归纳指
出零:;<判定准则，零:;<可以用来初步判断一
组:;<的准确性，或是否收敛，或算法是否适用!本
文给出一种简便求解条件:;<的技术，条件:;<
被广泛应用［6，7］，甚至相空间重构和筛形吸引域研

究，而求解技术则很少涉及!我们的计算结果说明方
法的有效性!本文指出在应用 ECFG程序计算:;<
时初值的选取可以很严重地影响结果的收敛!
对于高维复杂系统可能存在复杂的情况!

H3I3=C.和JA’KC/5等人的一项工作［$+］，指出存在
一种情况，:;<谱中存在一个零上下波动的指数，
此时实际上计算机产生的轨道已经不反映系统真实

的轨道!由于混沌对初值的极度敏感，计算机产生结
果的可靠性，是首先应讨论的问题，H3I3=C.和JA’0
KC/5等人的工作是基于LB3#CI5./定理!但>3?’.
的零:M3N-.CO指数定理，意义是显然的，应引起足
够的重视，实际计算时出现与此相违背的结果，排除

算法方面的错误，可能意味着新的复杂现象，比如零

上下波动的指数的情况，在此情况下不存在真实混

沌轨道与计算机产生的轨道相对应!

该工作受到马里兰大学的;!JA’KC/5教授给予指点和
提供文献，在此表示感谢!
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@.!X期 何岱海等：常微分方程系统李雅普诺夫特性指数的研究


