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ABSTRACT

The surface topographies of Si-substrate and ZnO films as-deposited and annealed were measured by atomic
force microscope AFM . Five methods variance from average height absolute deviation from average height
height based on the minimum height of the rough surface height based on a depth from the surface height based
on the bottom of the film for determining height distribution probability are used to calculate the multifractal
spectra of AFM images. It is found that the former three methods could not satisfy the scaling law well when the
smaller probability subsets provide the main contribution to the partition function. On the other hand the latter
two methods can satisfy the scaling law close to 3 orders of magnitude and can be used to compare roughness be-

tween different rough surface quantitatively.
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