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ABSTRACT

Numerical Simulations for directed polymers in 1+ 1 and 2 + 1 dimensions show that the transverse fluctuations and
free energy fluctuations tend to the strong coupling limit AxCt” AFoct” v=2 3 w=1 3ford=1+1 v=0.6 w
~(0.2 for d =2+1 at any finite temperature as their behaviors at zero temperature for the long length ¢ of polymer. At
{inite temperatures as a result of that the specific heat in both 1+ 1 dimensions and 2 + 1 dimensions scales as ¢ and the
entropy fluctuations in 1 + 1 dimensions scale as 7' 2 the ensemble energy fluctuations in both 1+ 1 and 2 + 1 dimensions
and the internal energy fluctuations in 1 + 1 dimensions are more pronounced than the free energy fluctuations and scale as
' 2. There is an indication of a phase transition in 2 + 1 dimensions. It is plausible that the entropy fluctuations and the
internal fluctuations per unit length polymers for =0 will become zero value at high temperatures from nonzero values

at low temperatures at some temperature T = T where the entropy fluctuation reaches maximum.
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