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使用三氟甲烷和苯的混合气体，利用微波电子回旋共振等离子体增强化学气相沉积法制备了’／(比在

$)""—$)%!之间的!*(+’薄膜,研究了微波功率对薄膜沉积和结构的影响，发现微波功率的升高提高了薄膜的沉
积速率，降低了薄膜的’／(比，也降低了薄膜中(’和(’-基团的密度，而使(’!基团的密度保持不变,在高微波

功率下可以获得主要由(’!基团和 !!( (结构组成的!*(+’薄膜,薄膜的介电频率关系（"."$-—"."$%/0）和损

耗频率关系（"."$!—"."$#/0）均呈指数规律减小，是缺陷中心间简单隧穿引起的跳跃导电所致,!*(+’薄膜的介
电极化主要来源于电子极化,
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" 引 言

随着大规模集成电路性能的不断提高，对器件

尺寸的不断减小提出了极高的要求!为了解决由器
件尺寸减小所导致的信号传送延时，噪声干扰和功

率耗散增大等问题，要求用新的低介电常量（!"
!)#）材料作为层间介质，为此，低介电常量材料的研
究得到了人们的重视!目前，受到关注的材料主要包
括氟化567!玻璃、氟化非晶碳（!*(+’）、有机聚合
物、无机聚合物、多孔材料和无机8有机相混合材
料［"］!在这些材料中，氟化有机聚合物的介电常量
最低，被认为是最佳的候选者!但是，由于氟化有机
聚合物存在附着性不好、热稳定性较差等问题，使其

应用受到了极大限制!
由于!*(+’薄膜不仅介电常量较低，而且热稳

定性也较好，能够克服氟化有机聚合物的缺点［!］，

因而受到了人们的极大关注［!—3］，成为最具应用前

景的候选材料,要使!*(+’薄膜具有较低的介电常
量和较好的热稳定性，要求沉积的薄膜具有较高比

例的(’!基团和 !!( ( 双键，因为(’!基团是低极
化的氟化有机聚合物中的主要键结构［#］，而薄膜的

热稳定性则由 !!( ( 双键这种高交联结构来控
制［%］,尽管高比例(’!基团的(+’薄膜可以用热化

学气相沉积（(9:）和脉冲等离子体增强化学气相
沉积（;1(9:）法来制备［#，<］，同时高交联结构也可
以通过提高沉积温度、增强离子轰击和调整’／(比
来获得［%］，但是使薄膜既具有较低的介电常量，又

保持良好的热稳定性极其困难［-，"$］,
为了获得既具有高比例(’!又含有 !!( ( 交

联结构的!*(+’薄膜，除了沉积方法外，源气体的选
择是一个重要因素,通常，在沉积!*(+’薄膜时主要
采用(’&和(/&作为源气体，而(/’-和(%/%的
混合物极少使用,由于 (/’- 的分解比 (’& 容
易［""］，从(%/%易于得到 !!( ( 结构［"!］，这使得用

(/’-和(%/%的混合物沉积热稳定性较好的低介
电常量!*(+’薄膜有了可能,由于(’!和 !!( ( 基
团来源于前驱物与等离子体中电子碰撞的分解产

物，因此选择合适的电子温度来控制反应基团的比

例是控制!*(+’薄膜性能的重要途径,对于微波电
子回旋共振（1(2）;1(9:技术，在保持前驱物比例
固定的前提下，电子温度可以通过控制微波功率、控

制工作气压、改变基片位置或使用偏压来控制，因此

提供了控制薄膜性能的灵活便捷的途径,
本文使用三氟甲烷和苯的混合气体，利用微波

1(2;1(9:法制备了!*(+’薄膜，研究了微波功率
对薄膜沉积及结构的影响，分析了薄膜的介电性能，

发现通过提高微波功率的方法可以获得低介电常
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量、高交联的!!"#$薄膜%

& 实验方法

为了使用微波’"()’"*+法获得低介电常
数、高交联的!!"#$薄膜，在实验中采取了下列措
施：（,）通过改变微波功率来控制电子温度，从而控
制源气体分解形成的基团；（&）采用三氟甲烷
（"-$.）和苯（"/-/）的混合气体作为源气体%在!!"
#$薄膜的沉积中，通常采用"$0和"-0作为源气
体，而"-$.和"/-/的混合物极少使用%对于"-$.
和"$0，键能分别为1.12/和10&2345／678，在微波
放电时，"-$.比"$0更容易分解%对于"/-/和

"-0，"/-/中的"含量比"-0高，在等离子体环境
中比甲烷更容易离解，并且对热稳定性起主要作用

的 !!" " 交联结构更容易获得［,,，,&］%
实验中，采用多极场微波’"()’"*+法制备

!!"#$薄膜，实验装置与参数见文献［,.，,0］%因为
馈入微波功率的变化会导致等离子体电子温度的变

化，这将对源气体的离解率和基团的活性产生影响，

因此，实验中微波功率选择为,09，&:9，0&9，1/9和

399;%系统真空用5<,19真空机组获得，本底真空
为,29=,9>.)?，工作气压为,29=,9>,)?；源气体
采用三氟甲烷（"-$.，@@2@@1A）和苯（"/-/，分析
纯），用+93质量流量计控制进气流量比，三氟甲烷
和苯的进气流量均为1BCC6，即"-$.#"/-/D,#,；
采用（,99）取向的硅单晶片（1—:"·C6）、石英片和

E?"8单晶的新鲜解理面作为沉积薄膜的基片；沉积
时间为/96FG；沉积过程中基片没有加热，但由于粒
子对基片的轰击作用，基片温度有所升高，在0,—

::H之间%
为了计算薄膜的沉积速率和相对介电常量，用

’I.19表面粗糙度轮廓仪测量了薄膜的厚度%为了
研究微波功率对放电空间各种基团的影响，用

J&999微型光纤光谱仪在,/9—::9G6波段范围内
测量了"-$.，"/-/气体放电的发射光谱，根据基团
的特征谱线［,1］，获得了基团分布的信息%测量探头
位于距基片表面921C6%
用EFC78KL119傅里叶变换红外光谱仪测量了

薄膜在:99—0999C6>,波数范围内的透射谱，从而
获得了薄膜的键结构%用)-M119N射线光电子能谱
（N)J）仪的OP!!辐射研究了薄膜的结合态%
用)KQ4FG!’86KQ!",3紫外可见光分光光谱仪在

,@9—@99G6的波长范围内测量了薄膜的透射光

谱，按照弱吸收膜处理［,/］，计算了薄膜的折射率#，
由"QD#&获得了薄膜的光频介电常量"Q$
用-)0,@&R低频阻抗分析仪测量了!!"#$薄

膜的电容、介电损耗和交流电导，测量频率范围为

1-S>,.O-S，测量信号幅值为92,*%测量样品采
用RP／!!"#$／JF／RP层状结构%上电极为用掩膜法
真空蒸发沉积的RP电极，面积为1210=,9>&C6&%
根据下式计算了介电常量：

"%&’"9(
，

其中(为测量电极面积，&为薄膜厚度，’为测量
的电容，"9为真空介电常量$

. 实验结果与讨论

!"# !$%&’薄膜的沉积速率

根据薄膜厚度和沉积时间计算了!!"#$薄膜的
沉积速率%沉积速率随微波功率的变化关系如图,
所示%由图,可见，沉积速率在&29&—329&G6／6FG
之间，随微波功率的升高而增大%

图, !!"#$薄膜的沉积速率随微波功率的变化关系

薄膜的沉积与放电形成的基团有关，因此，实验

中利用发射光谱研究了放电空间等离子体中基团的

分布情况%图&为,09;微波功率下"-$.T"/-/
等离子体的相对发射光谱%由图&可见在微波放电
形成的等离子体中，存在 "$（,@329G6），"$&
（&/.2@3G6），"$&T（&:321,G6），$&（.:/2@9 和

09.2:9G6），"-（0.,21&G6），-（/1/2&:G6）和 $
（39.2@&和3.92@/G6）等基团，同时还存在许多无
法辨认的谱线%由于各种基团是通过源气体分子与
电子的碰撞而产生，并取决于电子能量，因此电子温

度的变化可以使"-$.出现不同的分解过程
［,3］，从
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图! "#$%微波功率下&’()*&+’+等离子体的相对发射光谱

而形成不同的分解产物：

&’()*,-!&(!*’(，!!"#!#!$./0／123，
（"）

&’()*,-!&()*’，!!"###)$4/0／123，
（!）

&’()*,-!&’(!*(，!!"##.!$5/0／123，
（)）

因此，这些谱线可能来源于&’()分解形成的基团
（如&’(!，&()）或&+’+分解形成的基团6
由于&(，&(!，&(!*，&’是成膜基团，而(则

对沉积的薄膜起刻蚀作用，因此，在"7&8(薄膜沉积
过程中，存在一个薄膜生长与刻蚀并存的竞争过程6
如果在薄膜沉积过程中等离子体空间以&(，&(!和

&()为主，薄膜生长便成为主要过程；相反，如果(
为主要基团，刻蚀便是主要的6根据不同微波功率下
的发射光谱，获得了&(，&(!和(基团的相对辐射
强度随微波功率的变化关系，如图)所示6在低微波
功率下，&(基团的强度比(基团高，因此以薄膜生
长为主；在高微波功率下，&(，&(!*和&’基团消
失，&(!和(基团仍然存在，虽然(的相对强度比

&(!强，但由于&’(!等成膜基团的存在，薄膜生长
仍然是主要过程，因此提高微波功率可以提高薄膜

的生长速率6

!"# !$%&’薄膜的成分与结构

为了得到薄膜的成分和&，(的结合状态，对薄
膜进行了9:;分析6根据9:;中&"<和("<峰的面
积，计算了"7&8(薄膜的(／&比6(／&比随微波功
率的变化关系如图#所示6可见薄膜的(／&比在

$=+!—$=""之间，随微波功率的增大而减小6在

:>&?@沉积的聚合物薄膜中，观察到类似的现象，

图) &(，&(!和(基团的相对辐射强度随微波功率的变化关系

即偏压的提高会导致聚合物中(原子的减少，这被
认为是与高能离子轰击引起聚合物容易被刻蚀有

关［.］6对于>&A:>&?@法沉积的"7&8(薄膜，(／&
比随微波功率增大而减小的趋势，与微波功率改变

导致的电子能量变化有关6随着微波功率的增大，电
子能量提高，对薄膜表面的轰击作用增强，从而使薄

膜中的(脱附解吸能力增强，导致沉积的薄膜中(
的含量降低6

图# "7&8(薄膜的(／&比随微波功率的变化关系

为了确定沉积的薄膜的键结构，用傅里叶变换

红外光谱仪测量了!5$%微波功率下沉积的样品在

5$$—#$$$B1-"波数范围内的透射谱，如图4所示6
从红外光谱图可见，在波数为""+4=$C，""C"=5"，

"+)"=C$，"."!=C!和)#"$=#$B1-"处出现4个吸收
峰，这分别是由&(基团中&—(键、&(!集团中的

&—(键、 ""& & 键、 ""& D 键和D—’键的伸缩振
动吸收所致 ""6& D 键和D—’键的振动吸收来自
于薄膜表面吸附的空气和水气［#］，而&—(键和

""& &键则来自沉积的薄膜的结构6因此，沉积的
薄膜是由&(基团、&(!基团和 ""& & 结构组成的

"7&8( 薄 膜6这 种 ""& & 结 构 只 在 用 甲 苯
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（!"#$!#%）和三氟甲苯（!"#$!&%）、甲苯和六氟化
硫（’&"）的混合物作为源气体沉积的!(!)&薄膜中
存在［*］，而用其他非苯环结构源气体沉积的!(!)&
薄膜中很难见到［+，,］，这表明采用含有苯环结构的

源气体有利于获得含有 !!! ! 结构的!(!)&薄膜-

图$ !(!)&薄膜的红外透射光谱

图" !(!)&薄膜./’的!01峰及其解叠峰

用./’进一步研究了!(!)&薄膜的结合态-图

"示出2,34沉积的薄膜./’的!01峰-用高斯分
布将!(!)&薄膜的!01峰进行解叠，可见存在—

!—#、—!—!&—，—!&—，—!&2—和—!&%—结
合态-根据2,5，252和25*67处的!&，!&2和!&%
峰的面积，计算了!&，!&2和!&%基团的相对含量-
!&，!&2和!&%基团相对含量随微波功率升高的变
化关系如图+所示，!&和!&%基团呈减小趋势，

!&2基团基本保持为常数，这与空间等离子体中基
团的分布一致，这表明薄膜的沉积是由空间基团在

表面吸附所形成的-

!"! !#$%&薄膜的介电性能

!(!)&薄膜作为低介电常量材料，其介电性质
是最重要的研究内容-尽管有关工艺条件对介电性

图+ !&，!&2和!&%基团相对含量随微波功率升高的变化关系

质的影响开展了一些研究工作［%，"］，但!(!)&薄膜
的介电色散行为极少受到关注-
图,为383+/9，$"34条件下沉积的!(!)&薄

膜的介电常量和介电损耗随频率的变化关系，可见

介电常量随频率增大而减小，当频率在0:03%—0
:03"#;之间时，呈现出!<!""=0的规律，"<
38,5，因此介电常量随频率的变化较小，有利于薄膜
在较宽的频率范围内应用#同样，!(!)&薄膜的介电
损耗随频率的变化呈现出与介电常量类似的频率关

系，当频率在0:032—0:03$#;之间时，介电损耗
随频率的增大呈指数规律减小，即>9?#<$"$=0，$
<38*$；当频率接近0:03"#;时，介电损耗随频率
的增大而趋于常量并略增大，这是由于电极寄生电

阻在较高频率下产生了较大损耗的缘故［0,］#这种介
电频率关系与类金刚石碳膜的相类似［05］，而损耗频

率关系则与类金刚石碳膜存在较大差异，这表明由

于&的引入，造成薄膜的电导行为不同于类金刚石
碳膜#

图, !(!)&薄膜的介电常量和介电损耗随频率的变化关系

对于!(!)&薄膜，交流电导随频率的变化关系
分成两部分，如图5所示-当频率在0:032=":
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!"#$%之间时，交流电导随频率的变化极小，基本保
持为常量，当频率在&’!"#—!’!"&$%之间时，交
流电导随频率呈分段的线性规律变化，即!(!""，

"从&’!"#—#’!")$%频率区的"*+&增大至#’
!")—!’!"&$%频率区的"*,##

图- !./01薄膜的交流电导随频率的变化关系

根据非晶材料电导行为的分析［!2—3!］，!./01薄
膜在!’!"34&’!"#$%之间的电导与导带扩展态
中的电子导电有关，这些电子对电场的变化响应较

快，结果交流电导与频率的关系在此频率范围内接

近常数；当频率在&’!"#—!’!"&$%之间时，电导
与频率关系的线性指数为"*+&—"*,#，这是由材料
中缺陷中心之间的简单隧穿引起的跳跃导电过程所

致5因此，!./01薄膜在!"34!"&$%之间的电导是
低频下以导带扩展态中的电子导电为主、中高频率

下以跳跃导电为主的导电过程5

!"# !$%&’薄膜的极化机制

由于介电极化主要来源于偶极子极化、离子极

化和电子极化这三种极化过程［33］，对薄膜的介电极

化机制有清晰的了解，对于进一步降低材料的介电

常量有重要作用#根据薄膜紫外可见光透射光谱计
算了光频介电常量，#6(!*&2#，而!./01薄膜低频
（!7$%）的介电常量为#(3*)&，由此可见!./01薄
膜的电子极化是介电极化中的主要部分，这与89.
:;［#］获得的结果一致5这表明对于!./01薄膜，在偶
极子极化、离子极化和电子极化这三种极化机制中，

电子极化对!./01薄膜的介电极化起主要作用，其
主要成因是/—1键电子云畸变引起负电中心位移
所致5

+ 结 论

用微波8/<=8/>?法和/$1#，/&$&源气体
沉积了1／/比在"*!!—"*&3之间的!./01薄膜材
料5由于微波功率的改变导致了电子温度和等离子
体密度的变化，造成了不同的源气体分解过程，结果

微波功率的升高导致了薄膜沉积速率的提高、1／/
比的降低，这也导致了薄膜中/1和/1#基团密度
的降低，而保持/13基团接近常量5在高微波功率
下沉积的薄膜是主要由/13基团和 !!/ / 结构组
成的!./01薄膜5薄膜的介电频率关系（!’!"#—!
’!"&$%）和损耗频率关系（!’!"3—!’!")$%）均服
从指数规律，随频率的增大而减小，是缺陷中心间简

单隧穿引起的跳跃导电所致5!./01薄膜的介电极
化主要来源于电子极化5
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