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Abstract
The extended canonical Noether identities derived from an extended action in the phase space for a system with a higher-or-
der singular Lagrangian are formulated. Based on the canonical symmetries of generalized constrained Hamiltonian systems a
counterexample to a conjecture of Dirac is given. Using the canonical first Noether theorem and canonical Noether identities and
the extended canonical Noether identities we have shown that Dirac’ s conjecture fails for a system with a higher-order singular

Lagrangian in which there is no linearization of constraint in our treatment.
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