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建立了含克尔介质微波激射器腔场稳态光子数分布的表达式 )研究了在热原子、临界和超冷原子的方式下微
波激射器中原子在稳态时的反转特性 ) 结果表明：注入的二能级原子在不同方式下，原子的反转特性不一样 ) 在热
原子方式下，原子在一部分腔长 !的区域无反转，且随原子注入速率的增大，反转区域和反转概率增大 ) 在临界方
式下，原子的反转呈现周期性的坍塌和复苏现象 ) 而在冷原子方式下，原子在腔长 !的全部区域无反转 ) 克尔效应
和失谐量使原子的反转概率减小 )
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’ , 引 言

微波激射器含有一个微波腔和一束入射到腔中

的处于激发态原子流的物理系统，原子流足够稀疏

以至每次最多只有一个原子出现在微腔中［’，%］) 微
波激射器实验上的实现为观察原子与辐射场相互作

用的量子特性提供了最简单的物理系统［"］)它已显
示了许多量子效应，例如光场的亚泊松分布［!］、囚禁

态［*］、数态和压缩态的产生［+，$］等 ) 在 -./01234563
67082模型中，原子反转的演化是辐射场的量子特性
本质上影响系统动力学的最简单例子之一［(］)自从
916:1等人在实验上成功地观察到了原子反转的崩
溃和再生现象以来，原子反转一直是量子电动力学

研究的热门领域之一，人们进行了大量的研究［&—’!］)
近年来，人们对无反转激光和无反转放大的可能性

进行了大量的研究［’*—’$］，并在实验上进行了证

实［’(］，因此微波激射器的反转特性无疑是值得研究

的问题 ) 由于许多量子效应可在微波激射器和其他
微腔量子系统中观察到［’&—"#］，因此在理论上研究微

波激射器中原子的反转特性具有重要意义 ) 本文将
在热原子、临界状态和超冷原子的方式下研究微波

激射器中原子在稳态时的反转特性 )

% , 腔场稳态光子统计分布

假设初始时刻处于激发态 ; "〉的二能级原子
沿 # 轴入射到含有单模辐射场的克尔介质微腔中，

腔场处于光子数的某种叠加态"
$

%$ ; $〉) 通过形成

原子和场的密度矩阵以及对原子内外自由度求迹，

则辐射场的约化密度算符为［"’］

!（ &）< "
’ < "，(#= #〈 ’，# ;"（ &）〉〈"（ &）; ’，#〉)（’）

在粗略的近似下，辐射场的约化密度算符的时间演

化方程为［"%］

)!（ &）< *!!（ &）> !!（ &）， （%）
式中!!（ &）为一个原子与腔场相互作用后引起!（ &）
的改变量 ) 原则上，非线性谐振子的主方程不同于
线性谐振子的主方程，但对于弱衰减率和很低的温

度（$( 很小）下，场的损耗可以用线性的刘维算符描

述［""］：

!!（ &）< ? +
%（$( > ’）（" > "! >!" > " ? %"!" >）

? +
% $(（"" >

! >!"" > ? %" >
!"）， （"）

式中 + 为腔场的衰减率，$( 为热平衡时的光子数 )
约化密度算符!（ &）的矩阵元方程可写为

)!$，$@（ &）< "$，$@!$，$@ > ($?’，$@ ?’!$?’，$@ ?’
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式中

#"，"# % $（%#，"%!#，"# ! &#，"&!#，"# & "）

& ’
’（"( ! "）（" ! "#）

& ’
’ "(（" ! "# ! ’）， （(）

("，"# % $（%(，"!" %!(，"# !" ! &(，"!" &!(，"# !"）

! ’"( （" ! "）（"# ! "" ）， （)）

!"，"# % ’（"( ! "） """ #， （*）
式中 %#，"（)）和 &#，"（ )）分别为原子仍然处于激发
态 + #〉时的反射和透射振幅，%(，" ! "（ )）和 &(，" ! "（ )）
分别为原子发射一个光子跃迁到基态 + (〉时的反射
和透射振幅 , 如文献［-$—-)］所述，有
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式中%为克尔介质的非线性参数，$为系统的失谐
量以及 * 为光场和原子的耦合常数 ,
为了简便，下面仅考虑一种特殊情况：9:.7 模

函数 ,
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" 5 ; , ; -，
5{ 其他，
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则反射和透射系数为［-*］
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式中 ) 为原子中心质量运动的动量，$ 为原子注入
的速率，0 为无量纲腔长，/ 为原子的质量 ,
从（$）—（*）式可以得到微波激射器腔场的光子

数概率分布函数 1（ "）%!"，" , 对于稳态情况，令

2!"，" % 5，则有
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式中
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式中 15 为归一化常数，567 为归一化抽运速率，

8:9/../20（"）表示当腔场处于数态 + "〉时，初始时刻处
于激发态 + #〉的二能级原子通过腔场后发射一个光
子跃迁到基态 + (〉时的概率，并有如下形式［-$］：

8:9/../20（"）% + %(，"!"（)）+ ’ ! + &(，"!"（)）+ ’ ,
（’-）

-> 注入原子的反转特性

当微波激射器腔场处于数态 + "〉时，初始时刻
处于激发态 + #〉的原子通过腔场后处于激发态 + #〉
的概率 8# % " & 8:9/../20（"），处于基态 + (〉的概率 8(

% 8:9/../20（"），则当腔场处于数态 + "〉时，二能级原子
通过腔场后的反转概率为

9（"）% " & ’863:;;:<"（"）， （’$）
当腔场处于稳态时，二能级原子的反转概率为

= % #
=

" % 5
9（"）1" , （’(）

下面讨论在热原子（ $ ? "）、临界状态（ $ % "）和
超冷原子（ $ ; "）三种方式下微波激射器注入原子的
反转特性 ,
图 "示出热原子方式下二能级原子对相互作用

长度（0 %&-）的原子反转概率曲线图 , 如图 "（7）所
示，当 0 较小时，一定的区域存在原子布居数反转 ,
当 0 较大时，激发态的布居概率大于基态的布居概
率，不存在原子反转，可产生无反转微波激射器 , 当

%8* % 5,’（如图 "（@））时，克尔效应使得原子的反转
概率减小 , 当 "( % 5, (（如图 "（1））时，在一部分区
域，热平衡时的光子数使原子的反转概率几乎为零 ,
当$8* % -（如图 "（A））时，失谐量使原子的反转概
率减小 ,
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图 ! 原子对相互作用长度（! "!"）的原子反转概率（ # " !##，$%& " !#）

图 $ 原子对相互作用长度（! "!"）的原子反转概率（ # " #%!，$%& " !#）

图 $示出超冷原子方式下二能级原子对相互作
用长度（! "!"）反转概率曲线图 %从图 $可以看出，
在所有的区域 !，原子在激发态时的布居概率大于
基态时的布居概率，没有发生反转 % 而且克尔效应、

热平衡时的光子数和失谐量都不能使原子发生反

转，因此可以称为无反转微波激射器 %
图 &示出不同方式下二能级原子对相互作用长

度（! "!"）的原子反转概率曲线图 % 如图 &（’）所示，
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当原子处于冷原子方式（ ! ! "# $）下，原子没有发生
反转，且出现了周期性振荡现象 # 如图 %（&）所示，当
原子处于临界方式（ ! ! $）下，原子在零值附近出现
了周期性坍塌和复苏反转现象，且反转的振荡频率

很大 # 如图 %（’）和（(）所示，当原子处于热原子方式
（ ! ) $）下，原子出现了较大的反转区域 "，且随 ! 的
增大，反转区域 " 增大，振荡频率减小 #

图 % 原子对相互作用长度（" !!#）的原子反转概率（$%& ! $"，"! "，# ! "，’( ! "）

*+ 总 结

本文建立了含克尔介质微波激射器腔场稳态光

子统计的量子理论，在热原子、临界状态和超冷原子

的方式下研究了微波激射器注入的二能级原子在稳

态时的反转特性 # 结果表明：注入的二能级原子在
不同方式下，原子的反转特性不一样 # 在热原子方
式下，原子在一部分腔长 " 的区域无反转，且随原

子注入速率的增加，反转区域和反转概率增大 # 在
临界方式下，原子的反转区域呈现周期性的拉比振

荡以及坍塌和复苏现象 # 而在冷原子方式下，原子
在腔长 " 的全部区域无反转 # 克尔效应和失谐量使
原子的反转程度变弱 #热平衡时的光子数使原子在
腔长 " 的一部分区域上、下能级的布居概率接近相
等，几乎为零 #
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