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Abstract
The gyrokinetic equations for the electrostatic electron-temperature gradient modes in toroidal plasmas are solved with parti-
cle simulation method. An axisymmetric geometry with circular flux surfaces is employed. The full kinetics including finite Lar-
mor radius effects transit £, v, and toroidal curvature and magnetic gradient drift motion is retained. The basic method of
the particle simulation is described briefly. The fourth-order adaptive stepsize scheme is adopted that saves computer time and
is simple. The basic characteristics of the modes are discussed. The scaling of the critical gradient with respect to toroidicity and
to the ratio of electron temperature over ion temperature is given. Comparison with experiments are made and the theoretical re-

sults are close to the experimental observations.

Keywords electron-temperature gradient instability particle simulation adaptive stepsize scheme critical gradient
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