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Abstract
This paper focuses on the influence upon the structure of the wake-field and the production of hot electrons due to a finite-
width laser of high intensity and ultra-short duration propagation through an underdense plasma. Under the action of lognitudinal
and transverse pondermotive forces the plasma density forms a horseshoe cavity which acts as a moving convex to make the laser
pulse self-focusing. The wake wave front curvature increases with time until a transverse wave breaking occurs which depresses
the wave breaking limit of the electrostatic field. The decrease of transverse wave breaking pushes more electrons into the acceler-

ating phase region to be trapped by wake wave and decreases the maximum electronic kinetic energy.
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