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利用扫描力显微术中压电响应模式原位研究了（&&&）择优取向的 ()*+#,-#铁电薄膜的纳米尺度畴结构及其极
化反转行为 .铁电畴图像复杂的畴衬度与晶粒中的畴排列和晶粒的取向密切相关 .直接观察到极化反转期间所形
成的小至 /#01宽的台阶结构，该台阶结构揭示了（&&&）取向的 ()*+#,-#铁电薄膜在极化反转期间其畴成核与生长
机理主要表现为铁电畴的纵向生长机理 .
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& G 引 言

铁电薄膜材料因具有铁电性、压电性、热释电

性，以及非线性光学效应等特性而在非易失性铁电

存贮器（4CH7IE）、微电子微机械系统（I8IJ）等有
着极其广泛且重要的应用前景［&，"］.目前，铁电薄膜
材料的研究及开发取得了实质性的重要进展，如高

密度的铁电存贮器的单元尺寸已降低到 /#—
&##01［/］，在如此小的亚微米尺度上迫切需要了解材
料的纳米尺度微区物理性能如铁电畴的形成、极化

反转机理、极化疲劳和极化保持特性等，这对以纳米

尺度铁电电容器研制的高密度 4CH7IE和 I8IJ显
得尤为重要 .
扫描力显微镜（EF:00;0A K@?FC 1;F?@EF@LC，J4I）是

源于原子力显微镜（74I）的一类与力作用技术相关
的仪器总称［-，$］，其工作特点是利用探针与样品之间

不同的相互作用力来研究表面或界面的纳米尺度物

理及化学性质 .在铁电材料领域，J4I现已成为观察
和控制铁电畴结构的一种潜在的强有力的研究技

术［+—%］. J4I与传统铁电畴的研究方法如偏光显微
镜［&#］、J8I［&&］，*8I［&"］，J87I［&/］等相比，具有一些无
可比拟的优点：制样简单（试样无需预处理）、操作环

境简易（在大气环境下即可进行）、成像迅速（扫描及

成像同步进行）、铁电畴分辨率高（纳米级分辨率）、

畴结构无损伤性 .最近，利用 J4I研究铁电薄膜材
料尤其是 ()* 薄膜材料的畴结构控制、极化反转、
极化疲劳及极化保持特性等已取得了显著的进

展［&-—&2］.然而，对于极化反转期间的畴成核和生长
机理仍存在分歧 . *:A:0MECN，O@L:<:0及 5=:;认为在
铁电晶体或铁电薄膜中 . 畴反转机理以横向畴生长
机理为主［&’—"#］，而 P@0A和 Q>?@R:等人的研究表明
该主要机理为畴纵向生长机理［&$，"&］.本实验旨在通
过研究（&&&）取向生长的 ()*铁电薄膜中纳米尺度
畴结构及其极化反转行为来揭示极化反转期间的畴

成核与生长机理 .

" G 实 验

&’(’ 薄膜制备

()*+#,-#（(S（)?#G+ *;#G-）T/）铁电薄膜采用溶胶9
凝胶技术制备 .适量的三水醋酸铅［(S（5P/5TT）"·
/P"T］、异丙醇锆［)?（T（5P"）"5P/）-］分别溶解于乙

二醇甲醚溶液中［5/P’T"］，然后加热至 2# U，搅拌
/#1;0，冷 却 到 室 温 后，再 加 入 钛 酸 丁 酯［ *;
（T5-P%）-］，并加热至 2# U，且继续搅拌 /#1;0，从而
形成 ()*前驱液 .该前驱液的浓度和 LP值由乙二
醇甲醚和冰醋酸调节至 #G/I和 -G 将 ()*前驱液经
过甩胶沉积在 (M（&&&）,*;,J;T" ,J;（&##）基片上，转速
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为 !"""#$%&’，每次匀胶完毕，将湿膜样品在 ()" *的
热平台上热分解 +" %&’，该步骤反复几次直至所需
厚度 ,最后将其在 -""*下通氧进行快速热处理
（./0）)%&’，获得晶化完整的、厚度为 1)"’%的 23/
薄膜 ,薄膜的结构及铁电性分别采用 .045+" 6射线
衍射仪及 ./--0铁电标准测试仪来测定 ,

!"!" #$%

实验中采用的 789 为 720 (""$72:(;""（7<=>
:’?, @A’,），对铁电畴结构成像采用的工作模式为压
电响应模式 , 789的压电响应模式对铁电畴的成像
原理是基于探测铁电体在外加 B?电压 !B? C !" D&’!"
作用下由逆压电效应所引起的局域压电振动，电压

施加于探针与样品底电极之间，探针实际上起到一

个可动上电极的作用，而与样品一起产生谐振的微

悬臂的弯曲信号可由 E>?=5&’技术探测，信号的大小
及相位取决于压电系数的大小和方向，这意味着极

化取向相反的区域在 B?电场下彼此反向振动，从而
在压电响应图像上表现为不同衬度的区域 ,所有扫
描均在大气环境下室温下进行，789的微悬臂材料
为镀金的 7&(F!（GEH%AID GAJ , :’? ,），其弹性常数为

"K+F%L +，探针直径约为 1"’%，畴成像电压幅度为
+M，频率为 !=NO,

( K 结果与讨论

&"’" 结构与铁电性

图 +为 23/-"$!"薄膜沉积在 2J（+++）$/&$7&G1 $7&
（+""）基片的 6射线衍射（4.P）结果 ,可以看出，在
-""*处理下 23/-"$!"薄膜已完全晶化为纯钙钛矿
相，并且表现为（+++）择优取向 , 23/薄膜（+++）取向
生长机理源于在薄膜的热处理或退火过程中在 2J
与 23/薄膜之间所形成的一层籽晶过渡层 2J(2Q，该
籽晶层与 2J（+++）具有较好的晶格匹配，从而诱导了
23/薄膜的（+++）择优取向生长［11］,图 1为 23/-"$!"
薄膜的极化强度与电场的电滞回线图，薄膜显示具

有良好的铁电性，其剩余极化（# #）和矫顽电压（!?）

分别为 ))KR!S$?%
1 和 1K+M,

&"!" 纳米尺度畴成像

图 (（B）为 23/-"$!"薄膜的形貌图，可以看出薄
膜具有致密的多晶结构，平均晶粒尺寸约为 ;""’%,

图 + 23/-"$!"薄膜的 4.P谱图

图 1 23/-"$!"薄膜的极化强度5电场的电滞回线图

图 (（Q）为同时得到的相应的压电响应图像 ,图 (（Q）
表明畴结构呈现复杂的衬度 ,在一些区域可观察到
约 +""’%宽的亮$暗窄带（如图 (（Q）箭头所示），这些
区域无疑是极性相反的区域 ,但大多数晶粒显示灰
度畴衬度 ,针对压电响应图像中的灰度衬度，T#IU<#5
%B’等人提出以下几点可能的起因［;］：+）可能存在
几个极化取向随机的晶粒堆积在垂直于膜平面的方

向上；1）极化矢量平行于膜平面的 $ 畴；(）极化矢
量偏离膜平面垂直方向的畴；!）不具有压电性能的
非晶态或非铁电结构 ,基于 4.P结果，可排除原因
!），因为 4.P显示薄膜为纯钙钛矿相，无第二相存
在 ,根据压电响应原理，$ 畴的压电响应信号应为
零，而相应的压电响应图像的线扫描的非零信号排

除了 $ 畴对灰度畴衬度的贡献 ,据有关相图［1(］，室
温下的 23/-"$!"相结构对应三方铁电相，其自发极
化矢量方向位于 V +++ W方向 , 4.P结果表明，尽管
薄膜显示（+++）择优取向，但薄膜仍显示出一定的
（+""）取向 ,这意味着对于（+++）取向的晶粒其极化
矢量平行于膜平面的法向，而对于呈三方相结构的

（+""）取向的晶粒却不存在沿原型（+""）方向的自发
极化，从而表现为灰度畴衬度 ,因此，23/-"$!" 薄膜
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的压电响应图像中的复杂畴衬度可归因于晶粒的结

晶取向和畴排列所致 !

图 " 同时获得的 #$%&’()’薄膜的形貌图（*）和压电响

应图（+）

!"!" 纳米尺度畴反转

为进一步理解铁电薄膜中的畴反转机理，利用

,-.研究了 #$%&’()’ 薄膜中的极化反转行为 ! ,-.
探针先后施加 / 0123和 4 0123电压对图 "区域先
后扫描 !在每次施加偏压扫描后，利用压电响应模式
对畴成像信号采集以获得畴反转信息 !图 )为其对
应压电响应图像 !必须指出，同时获得的形貌图像与
图 "（*）完全相同 !对比图 )（*）与（+），发现二者畴图
像衬度差异较大 !如晶粒 5 下半部分的畴衬度在
4 0123偏压作用下已反转形成了衬度分明的亮、暗
畴带 !很明显，这些亮、暗畴带对应极性相反的区域，
其反转畴的宽度约为 6’78!而晶粒 5的上半部分的
畴衬度在反转期间却未发生明显的变化，这可能是

该区域存在较强的畴钉扎效应，该效应一般认为是

源于该区域的缺陷和空间电荷效应 !类似的未反转
畴区在其他晶粒中也表现得较明显 !可见，,-.不仅
为由畴钉扎效应所引起的未反转极化提供了直接的

实验证据，而且也提供了一条直接的线索来理解铁

电薄膜中的极化反转特性的退化行为 !

图 ) 2!8 9 2!8扫描区域的压电响应图 （*）为针尖电压为

/ 0123，（+）为针尖电压为 4 0123，（:）为图（+）中晶粒 ;的线扫

描压电响应信号

图 )（*）与（+）另一重大差别是在图 )（+）中出现
台阶状的畴结构，而图 )（*）中却丝毫未呈现类似结
构 !一般而言，铁电体的极化反转过程包含以下几个
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方面：畴的成核、畴的纵向生长、畴的横向扩张、畴的

融合 !据此，我们认为图 "（#）中所出现的清晰的台
阶结构是铁电薄膜中极化反转的直接证据 ! 在图 "
（#）中，外加电场沿薄膜厚度方向向下，将在薄膜$电
极界面处产生畴核，同时这些新生的畴核在外加电

场作用下将朝膜表面纵向生长 !由于畴核具有较低
能量［%"］，故将在已存在的畴壁上产生畴壁的横向运

动 !畴核在膜中的进一步长大，在已有的畴壁上形成
台阶 !而成核也有可能发生在这些新生的台阶面上，
结果观察到台阶结构，如图 "（#）箭头所示 !对图 "
（#）中出现台阶结构的晶粒进行线扫描信号分析，发
现各晶粒中的台阶结构的宽度近乎相等 !其中晶粒
&中的台阶宽度最小，其台阶宽度约为 ’()*，如图 "
（+）所示晶粒 &的压电响应的线扫描信号 !等距台阶
状畴结构的出现说明了在极化反转期间畴的横向生

长速度大于畴的纵向生长速度，从而使得在纵向生

长期间每个台阶结构的宽度保持不变，而这正是

,-./01所提出的畴的纵向生长机理的特征［%2］!因
此，在图 "（#）中所观察到的等距台阶状图案表明纵
向畴生长机理在（222）择优取向的 345薄膜中畴反
转期间占主导作用 !在铁电薄膜中，通常都认为平行

于电场方向畴的生长（纵向生长）速度远高于垂直于

电场方向畴的生长速度（横向生长）［26—%(］!然而，最
近 7/)8 及 9/::1的研究揭示出与上述相反的情形，
即在铁电薄膜中纵向生长速度远低于横向生长速

度［2;］!本文的研究证实了 7/)8 等人所提出的理论
在（222）择优取向的 345薄膜中的有效性，即纵向畴
的生长机理是整个反转期间速率限制性机理，决定

了该取向薄膜中的极化反转期间的畴成核与生长的

过程 !

" < 结 论

采用溶胶=凝胶法制备了（222）择优取向的
345>($"(铁电薄膜 !利用 ?@A中的压电响应模式原
位研究了薄膜中纳米尺度畴结构及其极化反转行

为 !铁电畴图像复杂的畴衬度与晶粒中的畴排列和
晶粒的取向密切相关 !观察到极化反转期间所形成
的小至 ’()* 宽的台阶结构，该台阶结构反映了
（222）取向的 345>($"(铁电薄膜在极化反转期间其
畴成核与生长机理主要表现为铁电畴的纵向生长

机理 !
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