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Abstract
The conservation theorem and the symmetries for systems of generalized classical mechanics are studied. In terms of the in-
variance of the ordinary differential equations under the infinitesimal transformations this paper established the Lie symmetrical
transformations of the systems in the high-dimensional extended phase space which only depend on the canonical variables and
a new type of conservation laws are directly obtained from the Lie symmetries of the systems. Actually the conservation laws are

the generalization of a conservation theorem of Hojman to generalized classical mechanics. Finally an example is given to illus-

trate the application of the results.
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