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　　通过分析放置于微波谐振腔中的磁有序晶体中的磁激子对激励过程 , 推导出了磁激子对的运动方程 , 发现磁

激子对不能被认为是两个单个的磁激子的一般组成 , 而是可以整体的看作为一个具有非线性行为的单模谐振子.

依据微波谐振腔与磁激子对集体形成的谐振器之间的耦合作用的机理 , 可以定性解释在有关磁激子对激励实验中

所出现的双峰现象.
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1.引 言

磁性材料的理论与应用研究已成为当前物理学

研究的热点之一
[ 1—10]

.其中自旋波(磁激子 ,magnon)

理论自 20世纪 30年代初由 Bloch提出以来就一直

为人们所关注.例如当对微波铁氧体材料制成的器

件注入高功率微波超过某一阈值 P c 时 ,人们注意

到除了产生打火 、过热这两种损坏器件性能的现象

以外还伴随着损耗的非线性效应(自旋波的非线性

激发).即能量通过自旋-自旋弛豫过程由一致进动

转移到磁激子 ,且磁激子数随功率增加呈指数增长 ,

通过自旋-晶格弛豫过程导致晶格振荡后产生声子.

因此研究自旋波系统的非线性动力学不仅在发展凝

聚态的基础理论方面而且对于改善磁性材料器件的

性能都有着重要的意义.

当频率为 ωp的较强大的注入微波功率施加于

磁有序晶体(如 YIG)时一致进动(k0 =0)被激发 ,这

时在自旋-自旋弛豫过程中所不能忽略的效应是:如

果能量关系

ωp =ω
～

k 或ωp =ω
～

k +ω
～
-k

成立(ω
～

k 考虑了由于非线性相互作用而引起的频

移),则有生成磁激子对的过程

2(k0 =0)※(k)+(-k)

或

(k0 =0)※(k)+(-k)

发生
[ 11 , 12]

.我们可以把磁激子对表示为

M-(k)=bkb-k , M+(k)=b
＊
k b

＊
-k ;

M0(k)=(1 2)(|bk |
2
+|b-k |

2
). (1)

这里 bk 和b
＊
k 是带有波矢量k 和频率ω

～
k 的自旋波

的经典复振幅.我们注意到在(1)式中的三个元素

M - ,M+和M0 可以分别看作是 SU(1 ,1)李代数生

成元 K 0 , K + , K -的经典类比.因此引入经典对易

关系

{A , B}=∑
q

 A
 bq

 B
 b

＊
q

- B
 bq

 A
 b

＊
q

, (2)

对一个给定的 k 可以得到

{M0 , M±}=±M± , {M- , M+}=2M0 ,

C =M
2
0 -

1
2
(M+ M-+M- M+). (3)

这里 C是Casimir不变量.由于 SU(1 ,1)李代数可以

有一个单玻色实现 ,所以它已被用于在理论上研究

各种相干和压缩态
[ 13—15]

.这意味着方程(1)中的三

种元素M0 , M+和 M-可以按照一个振荡器的经典

复振幅 mk 和m
＊
k 来表示 ,而这种振荡器则相当于

一个给定的磁激子对.本文提出一个按照 mk 和m
＊
k

来表示M0 , M+ , M-的处理磁激子对的理论方法 ,
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结果显示磁激子对不能简单地被认为是两个单个的

自旋波的一般组成.

2.磁激子对的运动方程

自旋波系统的Hanmiltonian方程可以写为

H  =ωRR
＊

R +∑
k
′2ωkM0(k)

+∑
k
′iGk(RM+(k)-R

＊
M-(k))

+F(R
＊

e
-iω

p
t
+R e

iω
p

t
)+Hint  . (4)

这里 R
＊
和 R 是频率为 ωR 的微波谐振腔模的复变

量;ωk 是“bare”自旋波频率;G k 是光子和磁激子的

非线性耦合参量;F 是激励场参数;方程中考虑了

已被实验证实起重要作用的谐振腔模的动力

学
[ 16—18]

.方程中的最后一项为

Hint  =2∑
k , q
′(2TkqM0(k)M0(q)

+SkqM+(k)M-(q))

+2∑
k

′T
(R)
k R

＊
RM0(k). (5)

其中 Tkq和Skq表示 4-磁激子相互作用的大小;T
(R)
k

表示光子-磁激子散射的大小.由于这里的自旋波系

统具有反对称性(k※-k),所以这里用∑
k
′表示在k

半空间上的求和.为了有一个无量纲的复变量作为

Bose 子产生和湮没算符的经典近似 ,引入 Plank常

数  作为空间常量.这样含有衰减参数(Γ相应于

R , γk 相应于bk)的磁激子的 Hamilton运动方程可以

写为

i
d
d t
+ΓR ={R ,H  },

i d
dt
+γk bk ={bk , H  }, (6)

这里对易关系式包含对 R 和R
＊
的导数.引入转动

体系中的变量

bk = ck e
-iω

p
t 2
和 R =R

～
e
-iω

p
t 2
,

可以得到复振幅的运动方程

i d
dt
+Γ+ ωp -ω

～
R R

～

=-i∑
q
′Gqcqc-q +F , (7)

i d
dt
+γk +

ωp

2
-ω

～
k ck =Pkc

＊
-k .(8)

其中

ω
～

R ≡ωR +2∑
q
′T

(R)
q N q ,

ω
～

k ≡ωk +4 ∑
q
′TkqNq +T

(R)
k |R

～
|

2
,

Pk ≡iGkR
～
+2∑

q
′Skqcqc-q ,

N q ≡
1
2
|cq|

2
+|c-q|

2
.

　　方程(7),(8)以及它们的共轭方程已被用于非

线性自旋波动力学的模拟
[ 13—15]

.由(8)式及其共轭

方程可以得到磁激子对的运动方程为

i
d
d t
+2γk + ωp -2ω

～
k σk =2N kPk , (9)

-i
d
d t
+2γk + ωp -2ω

～
k σ

＊
k =2NkP

＊
k ,

(10)

i
d
dt
+2γk |ck|

2
=i

d
d t
+2γk |c-k|

2

=Pkσ
＊
k -P

＊
k σk . (11)

其中 σk ≡ckc-k , σ
＊
k ≡c

＊
k c

＊
-k , 联立方程(9)—(11),

得到

d
d t
+2γk |ck |

2
-|c-k|

2
=0 ,

d
dt
+4γk N

2
k -|σ-k |

2
=0.

这样 ,对于方程(9)—(11)的任何解在 t  1 2γk 时 ,

 ck = c-k , σk =Nk .注意到:σk , σ
＊
k , Nk 可以被

认为是 SU(1 , 1)李代数在转动体系下的经典生成

元 ,并且

M-(k)=σk e
-iω

p
t

, M+(k)=σ
＊
k e

iω
p

t

,

M0(k)=N k , C =0. (12)

　　进一步导入相位角 θk 使得 , σk =Nk e
i(θ

k
-π 2)

,则

方程(7)和(8)变换为

i
d
d t
+Γ+ ωp -ω

～
R R

～

=-∑
q
′GqN qe

iθ
q +F ,

d
dt
θk -Gk R

～
e
-iθ

k +R
～ ＊

e
iθ
k - ωp -2ω

～
k

+4∑
q
′SkqNqcos(θk -θq) Nk =0 ,

d
dt
+2γk -iGk R

～
e
-iθ

k -R
～ ＊

e
iθ
k

+4∑
q
′SkqNq sin(θk -θq) Nk =0 .

　　从这些方程可以得出结论:k 半空间存在一个

区域Q , 使得在 Q 中Nk ≠0和 Nk =0(如果 k  Q).

这样方程就被简化为

i
d
dt
+Γ+ ωp -ω

～
R R

～
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=-∑
q∈ Q
′GqN qe

iθ
q +F , (13)

d
dt
θk -Gk R

～
e
-iθ

k +R
～ ＊

e
iθ
k - ωp -2ω

～
k

+4∑
q∈Q
′SkqN qcos(θk -θq)=0 , (14)

d
dt
+2γk -iGk R

～
e
-iθ

k -R
～ ＊

e
iθ
k

+4∑
q∈ Q
′SkqN qsin(θk -θq) Nk =0. (15)

　　稳定态(d dt =0)由不依赖于时间的函数 R
～ (0)

,

R
～ (0)＊

, θ
(0)
k 和N

(0)
k 来描述 ,而且区域 Q 应当包括方

程的振荡解ωp =2ω
～
k .

3.磁激子对的振荡器表达形式

考察方程(13)—(15),带有衰减参数的 Hamilton

方程可以写为

i
d
d t
+ΓR

～
=
 H
～
  

 R
～ ＊

,
d
d t
θk =-

 H
～
  

 N k
,

d
dt
+2γk N k =

 H
～
  

 θk
. (16)

其中

H
～
  = ωR +2∑

k∈ Q
′T

(R)
k N k -ωp |R

～
|

2

+ F -∑
k∈ Q

′GkNke
-iθ

k R
～

+ F -∑
k∈ Q

′GkNke
iθ
k R

～ ＊

+∑
k∈ Q

′(2ωk -ωp)Nk

+2∑
k∈ Q

′{2Tkq +Skqcos(θk -θq)}NkN q

(17)

是在转动体系中的有效磁激子对 Hamiltonian.现在

引入复变量

mk =
Nk +iθk

2
, m

＊
k =

Nk -iθk
2

. (18)

并考虑到 σk =N ke
i(θ

k
-π 2)

,则(12)式可以重新写为

M-(k)=
mk +m

＊
k

2
e
-i ω

p
t+π

2
+

m
k
-m

＊
k

2

=M0(k)e
-i ω

p
t+π

2
+

m
k
-m

＊
k

2 , (19)

M+(k)=
mk +m

＊
k

2
e

i ω
p

t+π
2

-
m
k
-m

＊
k

2

=M0(k)e
i ω

p
t+π

2
-

m
k
-m

＊
k

2 . (20)

　　显然(19)和(20)式是具有频率为 ωp 的振荡器的

数学表达形式 ,因而由 k 和-k 构成的磁激子对相当

于由经典复振幅所表现的非线性谐振子.同时方程

(3)对于含有 mk 和 m
＊
k 的交换子的经典相似也是有

效的.至此磁激子系统的运动方程可以重新写为

i
d
dt
+ΓR

～
={R

～
,H  },

i
d
dt
+γk mk +iγkm

＊
k ={mk , H

～
  }, (21)

4.结 论

当激励场的能量超过生成磁激子对的阈值

时
[ 5]
,即

F >F c ,
F c Γ

Γ
2
+(ωp -ωR)

2 =min
γk

Gk
,

则磁激子对表现得如同频率为 ωp 的非线性介质的

振荡.磁激子对漂移微波谐振器的频率并减小激励

场的振幅 ,这导致了吸收微波功率的限制 ,即使是在

Tkq =Skq =0的情况也是一样.因此整个系统(样品

+振荡器+微波激励场)需要用新的模式来描述.即

新模式可以通过自旋波频谱修正 Δω≈Ψ或通过另

外的频率为ω≈ωp +Ψ的微波激励场加在谐振器

模上来分析.由此 ,在放置于微波谐振腔的非线性介

质中激励出的磁激子对相当于一个谐振子的结论可

以定性地说明在 YIG 中的磁激子激励实验
[ 16]
中所

观察到的两个吸收峰是频率为 ΨR 的微波谐振器与

频率为Ψk 的磁激子对非线性相互作用的结果 ,定

量分析将在今后的理论与实验工作中进行.
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Characterization of the nonlinearly excited magnon pair＊

Shi Qing-Fan1)2)　Yan Xue-Qun1)2)

1)(Department of Applied Physics , Beijing Institute of Technology , Beijing 　100081 , China)
2)(Institute of Physics , Chinese Academy of Sciencies , Beijing 　100080 , China)

(Received 9 April 2002;revised manuscript received 28 June 2002)

Abstract

The Hamilton' s equations of motion were derived by analyzing the process of excitation for magnon pair in magneto-ordered

medium placed in a microwave oscillator.The result showed that the magnon pair couples with the microwave resonator with non-

linearly oscillatory characterization.

Keywords:magnon , resonator , Hamilton equation
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