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用积分因子方法研究非线性非完整约束系统的守恒律 ’给出了非完整约束系统的 ()*+,方程的积分因子的定
义，研究了守恒量存在的必要条件，建立了系统的守恒定理及其逆定理，并举例说明结果的应用 ’
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! 4 引 言

守恒律往往与动力学特征量或运动微分方程在

无限小群变换下的不变性相联系 ’例如，基于 567./8
+)0作用量在无限小群变换下不变性的 9):+,:;对称
性［!—&］，基于运动微分方程在无限小群变换下不变

性的 <.:对称性［#—!!］以及基于力学系统动力学方程
的形式在无限小群变换下保持不变的形式不变

性［!"—!#］’
!2=>年，?@*A.B提出了构造非保守动力学系统

的守恒律的积分因子方法［!&］，该方法类似于构造保

守系统的能量积分的方法，即通过运动方程乘以适

当的积分因子的方法来直接构造系统的守恒律 ’最
近，乔永芬等将该方法作了进一步的推广［!3—"$］’但
是，上述研究都将积分因子方法局限于各类系统的

正则方程 ’
本文研究非完整约束系统的 ()*+,方程的积分

因子与守恒律的构造 ’定义了非完整约束系统的
()*+,方程的积分因子；基于积分因子的概念，构造
出非完整约束系统的守恒律；建立了系统的守恒定

理及其逆定理 ’

" 4 非完整系统的 ()*+, 方程及其积分
因子

假设力学系统的位形由 ! 个广义坐标 "#（ # C

!，⋯，!）来确定 ’系统的运动受有 $ 个理想 D,:+6:E
型非完整约束

%!（ &，!，"!）C $ （! C !，⋯，$）， （!）
约束（!）加在虚位移上的限制为
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由 F’G/:7H:;+8<61;601:原理和虚位移方程（"），利用
<61;601:乘子法，可导出非完整约束系统的 ()*+,
方程［&］
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其中 ( 为系统的 <61;601:函数，)J

# 为非势广义力，

#!为约束乘子 ’假设系统非奇异，即设 F:+（ *#+）C

F:+（!" ( L!"·#!"·+）"$，则在运动微分方程积分以前，

可由方程（!），（%）求出乘子#! 作为 &，!，!·的函数，

于是右边第二项可表为$# C$#（ &，!，!·）C#!!%!L

!"·# 称为系统的广义约束反力 ’
定义 $ 如果不变式
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其中#，& 和!! 为 "，!，!·的函数，则称$! &$!（ "，!，

!·）为非完整约束系统的 ’()*+方程（,）的积分因子 -

, . 非完整约束系统的守恒定理

联合（,）式和（%）式，有
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定理 ! 如果函数$! 是 ’()*+方程（,）的积分
因子，那么非完整约束系统（0），（,）存在守恒量（第
一积分），形如

’ & ## ! !#
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对于一个已知非完整系统（0），（,），如果函数$!

是方程（,）的积分因子，那么每一组函数$!，#，& 和

!! 一定满足必要条件（/）-利用方程（,），条件（/）可
写成
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其中
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显然，如果函数组$!，#，& 和!! 满足必要条件（3），
那么沿着已知非完整系统的运动轨线，该函数组使

（1）式的右边成为一个常数 -于是，有如下定理 -
定理 " 对于满足必要条件（3）的每个非奇异

函数组$!，#，& 和!!，存在已知非完整系统（0），（,）
的守恒量（1）-
积分方程（3）或用其他特定的方法可以求得函

数组$!，#，& 和!! -对应于方程（3）的任意一个特解
或函数解［01］，其中不包含任何积分常数，由定理 5
可以得到非完整系统的一个守恒量（第一积分）-
利用上述定理来寻求系统的守恒量，其关键在

于找到函数$! &$!（ "，!，!·），#&#（ "，!，!·）和 & &

&（ "，!，!·）-将方程（3）展开，并分解为对$!，#和 &
的一阶偏微分方程，称这些偏微分方程为广义 67889

7:;方程，解广义 67887:; 方程便有可能找到这些函

数 -由于函数$!，#和 & 不依赖于 $< !，因此，令含 $< !

的项的系数和不含 $< ! 的项分别为零，可以将方程
（3）分离成（* ! 0）个线性偏微分方程，有
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（=）式和（02）式是关于（5* ! 5）个未知函数$!，#，&

和!! 的（* ! 0）个方程，可称为广义 67887:;方程 -由

于方程数目小于未知函数的数目，故$!，#，& 和!!

不是惟一的，我们可以适当选择$!，#，& 和!!，而得

到不同的守恒量 -
当!! & 2（ ! & 0，⋯，*）时，上述广义 67887:;方程

与根据 >(?*+?@理论得到的广义 67887:;方程［1］相同，
而在 >(?*+?@理论中，函数 & 称为规范变更函数，且
时间和广义坐标的单参数无限小变换为

"! & " !&#（ "，!，!·），

$!!（ "!）& $!（ "）!&$!（ "，!，!·）， （00）

其中&为无限小参数 - >(?*+?@守恒量的形式也与守
恒量（1）式一致 -因此，本文方法中有着基础重要性
的积分因子$! 和函数#，& 在 >(?*+?@理论中有非常

清晰的物理意义 -

% . 逆定理

假设非完整约束系统（0），（,）有积分

’ & ’（ "，!，!·）& A(:B* - （05）
显然，积分（05）与相应的积分因子$! 和函数#，& 必

须与方程（3）相容 -从方程（1）计算!&
!$·!

，并将所得结
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果代入（!"）式，得到
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其中!"!#"#’ #$!’ &令积分（!’）等于守恒量（(），即
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从（!*）式，有

) # !(
!%·!

!"!#
!$
!%·#

$#( )! $ (" ) $ & （!+）

由此可得下面的定理 &
定理 ! 如果非完整系统（!），（%）有一个第一

积分（!’），则与此积分相应的积分因子!! 和函数"，

)，#! 由关系（!%）和（!+）确定 &
代数方程（!%）和（!+）是关于（’& $ ’）个函数的

（& $ !）个方程，显然函数!!，"，)，#! 是不惟一的 &
例如，对应于同一个守恒量，通过适当选取其中的

（& $ !）个函数，我们可以得到不同的积分因子!! &

+ , 算 例

例 研究 -../001234/0模型［(］&系统的 5367386/
函数为

( # !
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非完整约束为

, # %·’! $ %·’’ ) %·’% # "， （!9）
试研究系统的守恒量 &
首先，研究正问题，求系统的守恒量 &方程（%）给

出
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广义 =>00>86方程（<），（!"）给出
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由于（’%）和（’*）式中## # "（ # # !，’，%），因此解
（’%）和（’*）相应于系统的 @A/BC/7对称性，其中"，!#

+(%’!"期 张 毅等：用积分因子方法研究非完整约束系统的守恒律



分别对应 !"#$%#&理论中无限小变换的时间和空间
的无限小生成元，! 对应规范变更函数；而在（’(）和
（’)）式中，由于!" 不全为零，因此与系统的 !"#$%#&
对称性没有上述对应关系 *根据定理 +和定理 ’，相
应于解（’,）—（’)），系统分别存在如下守恒量：

#+ - +
’ $（%·’+ . %·’’ . %·’,）. $&%, - /"01$ *（’2）

#’ - ’$%·, . $&’ - /"01$ * （’3）

#, - $%·’, . $&%, - /"01$ * （’4）

#5 - +
’ $（%·’+ . %·’’ . %·’,）. $&%, - /"01$ *（,6）

可以看到，解（’,）和（’)）对应于同一个守恒量，有 #+
- #5 *这表明一个守恒量可以对应不同的积分因子，
其中有些积分因子可以有清晰的物理意义，例如对

应系统的 !"#$%#&对称性 *
其次，研究逆问题，根据已知积分求相应的积分

因子 *假设系统有积分

# - $%·’, . $&%, - /"01$ * （,+）
方程（+,）和（+(）分别给出

"+ - %·+# .!+，

"’ - %·’# .!’，

", - ’%·, . %·,# .!,， （,’）

! - $%·+!+ . $%·’!’ . $%·,!,

. (# 7 $%·’, 7 $&%, * （,,）
上述四个方程中含有 3个未知量，因此解不惟一，可
以适当选取其中的 5个量来得到余下的 5个函数 *
例如，取

# - 6，!+ -!’ - 6，!, - %·,， （,5）
则有

"+ -"’ - 6，", - %·,，! - 7 $&%, * （,(）
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