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Abstract
Two phenomenological models based on the experimental samples of giant magnetoimpedance GMI effect are proposed.
The first model is a coaxial-cable wire composed of copper cylindrical wire electroplated with a soft magnetic layer and the
second is a sandwiched film structured by two soft magnetic layers within which Cu or Ag serves as the central layer. Their
characteristics are discussed theoretically using Maxwell equations and Landau-Lifshitz equation. Tt is proved that for the two
models the origination of enhancement of GMI effect is the same and the difference between them arises from the parameter of
their geometry. The structure of double deck is better than a single layer for the identical magnetic materials in GMI effect. The

application of the theoretical models to real materials is examined. Predictions by using the models are qualitatively in agreement

with experimental data.
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