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从动力学观点讨论弹性细杆的平衡稳定性问题 (建立了弹性杆的动力学方程，导出了杆的弯扭度与截面角速
度之间的运动学关系式 (对具有弧坐标 ! 和时间 " 双重自变量的离散动力系统扩充了 )*+,-./0稳定性定义 (以具有
初扭率的非圆截面直杆的平衡稳定性为例，应用一次近似方法证明了当静力学意义下的稳定性条件得到满足时，

动力学意义下的稳定性条件必同时满足 (
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!9 引 言

弹性细杆静力学的非线性理论建立在 123455/66
理论的基础上 ( !’:; 年 123455/66［!］利用弹性杆的平
衡微分方程与刚体定点转动的 <-=>3?@/2AA/.方程在
数学形式上的相似性，提出将时间变量 " 改为弧坐
标 !，使动力学的理论和方法，包括 )*+,-./0运动稳
定性理论应用于弹性杆静力学［"］( "#世纪 %#年代以
来，由于弹性杆作为 8BC力学模型在分子生物学领
域内研究工作的兴起，使 123455/66理论重新引起注
意［$—:］(已发表的大多数文献中，关于弹性杆平衡稳
定性问题的讨论均建立在 123455/66理论基础上，即
限于静力学范畴以内［&—’］(静力学意义的稳定性概
念是指在同样的受力条件下，杆的受扰挠性线的几

何形态与未扰挠性线是否接近 (由于无时间变量参
与，不可能根据挠性线变化的时间历程来判断受扰

后弹性杆的运动趋向 (因此更严格的稳定性判断必
须在动力学范畴内进行，即必须研究具有弧坐标 !
和时间 " 双重自变量的离散系统的稳定性问题 (在
为数不多的弹性杆动力学文献中，D+E/3和 1=+,,>3［;］

导出了杆的动力学方程，以及用拓扑学参数描述杆

几何形态的运动学方程；F/32>=* 和 G52,H+.［!#］在线
性化动力学方程的基础上，用数值方法研究了螺旋

线平衡的稳定性 (本文提出当时间自变量离散系统
发展为弹性杆模型的双自变量离散系统时，必须对

)*+,-./0稳定性的基本概念作必要的扩充 (文中以

具有初扭率的非圆截面直杆平衡问题为例，研究了

弹性杆平衡的动态稳定性与静态稳定性的相互关

系 (在一次近似意义下，证明了当静态稳定性条件得
到满足时，动态稳定性条件必同时满足 (

" ( 截面的弯扭度与角速度

讨论长度为 # 的细长等截面弹性杆的运动 (沿
用 123455/66理论的基本假设：截面为刚性且与中心
线 $ 正交；杆为均匀各向同性，满足线性本构关系；
忽略杆的体积力 (根据上述假设，杆的运动被离散为
沿中心线连续分布的刚性截面的运动 (中心线 $ 上
任意点 % 处截面的无限小角位移矢量!!为 % 点的
弧坐标 ! 和时间 " 的二元函数 (利用!!与弧坐标增
量!! 或时间增量!" 之比计算!对 ! 和 " 的偏导
数，分别记作"和#，

" I"!"!，

# I"!"" (
（!）

这里"为杆的弯扭度，# 为刚性截面的角速度 (建
立与截面固定的主轴坐标系（%?&’(），以 !)（ ) I !，"，

$）为基矢量，其中 !$ I"" J"! 沿 % 点处的切线轴 (

（%?&’(）相对曲线 $ 的 K3>.>L坐标系绕 !$ 的扭角为

!("在（%?&’(）中的投影")（ ) I !，"，$）由中心线为

曲线 $ 的曲率#、挠率$和扭角!确定，
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!! ""#$%#，

!& ""’(##，

!) "$ * +#
+ ! ,

（&）

杆在任意瞬时的几何形态由弯扭度!完全确定 ,设
!为与截面固定的任意矢量，则 ! 相对 ! 和 " 的偏
导数可利用矢量!和"写作

!!
!! " ! - !，

!!
!" " " - ! ,

（)）

将（)）式分别对 " 和 ! 求偏导数，得到

!& !
!!!" "

!!
!"（! - !）*" -（! - !），

!& !
!"!! "

!!
!!（" - !）*! -（" - !）,

（.）

符号“ /”表示相对动坐标系（#0$%&）的局部导数 ,由
于截面的角位移连续变化，令（.）式中的两个式子相
等，导出弯扭度! 与角速度" 之间的运动学关系
式［1］，

!!!
!" "

!!"
!! *! -" , （2）

) , 弹性杆动力学方程

设弹性杆在力和力矩作用下作任意运动 , # 点
在空间中的位置由相对固定参考点 ’ 的矢径 " 确
定，" 为弧坐标 ! 和时间 " 的连续函数 ,考虑 # 点与
邻近点之间微元弧段内杆的运动，根据动量定理和

对质心的动量矩定理，导出动力学方程

!#
!! "%(

! !
!"，

!$
!! * %) - # " !!"（&·"），

（3）

式中 # 和$为截面作用力的主矢和主矩，%为杆的
密度，( 为杆的截面积，& 为单位长度杆的惯量张
量，其在（#0$%&）中的对角线元素为 )* "%+*（ * " !，&，

)），+!，+& 为截面的惯性矩，+) 为极惯性矩，! "

!" 4!"为 # 点的速度，与切线轴基矢量 %) 之间满足

关系式

! !
!! " !

%)

!" , （5）

（3），（5）式相对（#0$%&）的局部导数形式为
!!#
!! *! - # 6%(

!! !
!" *" -( )’ " 7, （89）

!!$
!! *! - $ * %) - # 6

!!
!"（&·"）

6" -（&·"）" 7， （8:）
!! !
!! *! - ! 6" - %) " 7 , （8’）

将 #，$，!，"，! 等矢量在（#0$%&）中的投影记作
,*，-*，!*，&*，.*（ * " !，&，)），设弹性杆在松弛状态

下存在绕切线轴的常值原始扭率!7
)，杆绕 $，% 轴的

抗弯刚度和绕 & 轴的抗扭刚度分别记为 /，0，1，则
力矩 $的投影为

-! " /!!，

-& " 0!&，

-) " 1（!) 6!7
)）,

（1）

将矢量方程组（2），（8）向（#0$%&）投影，利用（1）式将

!* 以-*（ * " !，&，)）代替，导出以下动力学方程组：

!,!

!! *
-&

0 ,) 6 -)

1 *!( )7
) ,&

6%(
!.!
!" *&& .) 6&) .( )& " 7， （!79）

!,&

!! * -)

1 *!( )7
) ,! 6

-!

/ ,)

6%(
!.&
!" *&) .! 6&! .( )) " 7， （!7:）

!,)

!! *
-!

/ ,& 6
-&

0 ,!

6%(
!.)
!" *&! .& 6&& .( )! " 7， （!7’）

!-!

!! * !
0-& -) 6 -)

1 *!( )7
) -& 6 ,&

6 )!
!&!

!" *（)& 6 ))）&&&) " 7， （!7+）

!-&

!! * -)

1 *!( )7
) -! 6 !

/-! -) * ,!

6 )&
!&&

!" *（)) 6 )!）&)&! " 7， （!7;）

!-)

!! * !
/ 6 !( )0 -! -& 6 ))

!&)

!"
*（)! 6 )&）&!&& " 7， （!7<）

!.!
!! *

-&

0 .) 6 -)

1 *!( )7
) .& 6&& " 7，（!7=）

!.&
!! * -)

1 *!( )7
) .! 6

-!

/ .) *&! " 7，（!7>）

!.)
!! *

-!

/ .& 6
-&

0 .! " 7， （!7$）
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!"!
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!!$
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!"$
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作为特例，令 ! !&，!!&，即简化为弹性杆静力学
中的 ,-./00122方程［!，#］*

3 * 双自变量离散系统的稳定性基本
概念

将变量 ’(，"(，!(，)(（ ( ’ !，#，$）定义为弹性杆
的状态变量 !"*! !# *弹性杆的动力学方程是以 ! 和
& 为自变量的偏微分方程组，分别以右上角的撇号
和顶部的点号表示相对弧坐标 ! 和时间 & 的偏微
分，其一般形式为

!4 ’ "（!·，!，!，&）* （!!）
弹性杆的平衡状态，即未扰状态 ! 5（ !，&），为动力学
方程（!!）中当 !·!&时的特解，满足静平衡方程

!45 ’ "（&，! 5，!，&）* （!#）
当状态变量在杆中心线上的起始点 ! ’ !& 及初始时
刻 & ’ && 的值 !（ !&，&&）偏离未扰状态时，方程（!!）
的解 !（ !，&）为杆的受扰状态 *扰动 #（ !，&）’ !（ !，
&）% ! 5（ !，&）为受扰状态与未扰状态之差，满足扰
动方程

#4 ’ $（#·，#，!，&）* （!$）
弹性杆的未扰状态与扰动方程的零解 #（ !）!& 完
全等价 *扰动在 ! ’ !& 及 & ’ && 的值 #（ !&，&&）为起
始扰动 * 6789:;1<稳定性即关于起始扰动的稳定性 *
对于扰动方程（!$）中不显含弧坐标 ! 和时间 & 的自
治情形，双自变量系统的 6789:;1<稳定性具有以下
定义 *
定义 ! 若给定任意小的正数#，存在正数$，

对于一切受扰状态，只要其起始扰动满足 #（ !&，

&&）#$，对于所有 ! = !&，& = && 均有 #（ !，&） >

#，则称未扰状态 ! 5（ !，&）是稳定的 *
定义 " 若未扰状态稳定，且当 !$?，&$?

时均有 #（ !，&）$&，则称未扰运动 ! 5（ !，&）是渐近
稳定的 *
定义 # 若存在正数#&，对任意正数$，存在受

扰状态 !（ !，&），当其起始扰动满足 #（ !&，&&）#$
时，存在弧坐标 !! 和时刻 &!，满足 #（ !!，&!） ’#&，

则称未扰状态 ! 5（ !，&）是不稳定的 *

@ * 非圆截面直杆平衡的动态稳定性

弹性杆动力学方程（!&）存在以下常值特解：
’! ’ ’# ’ &，

’$ ’ ’&，

"! ’ "# ’ &，

"$ ’ "&，

!! ’!# ’ !$ ’ &，

)! ’ )# ’ )$ ’ & *

（!3）

此特解对应于直杆平衡状态 *定义以下无量纲弧坐
标 !%和无量纲时间变量 &%：

!% ’ "&( )# !，

&% ’
’&

%%+
"&( )# & *

（!@）

引入以下无量纲扰动量 ,(（ ( ’ !，⋯，!#）：

,( ’
’(

’&
（ ( ’ !，#），

,$ ’
’$ % ’&

’&

,$" ( ’
"(

’&
（ ( ’ !，#），

,A ’
"$ % "&

"&
，

,A" ( ’
#!(

"&

%+
’%&
（ ( ’ !，#，$），

,B" ( ’ )( %
+
’%&
（ ( ’ !，#，$）*

（!A）

将（!A）式代入方程组（!&），略去扰动量 ,(（ ( ’ !，⋯，

!#）的二次以上微量，得到一次近似扰动方程
,4! ’（! "&!）,# % ,@ " ,·!&， （!C8）

,4# ’ %（! "&!）,! "（! "’）,3 " ,·!!，
（!CD）

,4$ ’ ,·!#， （!C/）

,43 ’(,# "&! ,@ " -
%
! ,·C， （!CE）

,4@ ’ %(,! "（’ %&!）,3 " -
%
# ,·F， （!CG）

,4A ’ -
%
$ ,·B， （!C2）

,4C ’（! "’）,·3 "（! "&!）,F， （!CH）
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!!" # !·$ %（& ’!&）!(， （&()）

!!* #（& ’!）!·+， （&(,）

!!&- # !" ’（& ’!&）!&&， （&(.）

!!&& # % !( %（& ’!&）!&-， （&(/）

!!&0 # -， （&(1）
式中撇号和点号表示对 "%和 #%的偏导数，无量纲参

数"，#，!，!&，$，$
%
%（ % # &，0，2）定义为

" #
&’-

(0
-
，

# # &
) % &，

! # &
* % &，

!& #! ’$（& ’!），

$ #
*%-

2

(-
，

$
%
% #

’- $%
&+&
（ % # &，0，2）3

（&"）

令方程组（&(）中 !·%!-（ % # (，⋯，&0），导出相应的
一次近似静力学扰动方程

!!& #（& ’!&）!0 % !$， （&*4）

!!0 # %（& ’!&）!& ’（& ’#）!5， （&*6）
!!2 # -， （&*7）

!!5 #"!0 ’!& !$， （&*8）

!!$ # %"!& ’（# %!&）!5， （&*9）

!!+ # - 3 （&*:）
文献［(，"］中已在静力学范围内讨论了直杆平

衡的稳定性问题，导出了受拉扭作用直杆的静态平

衡稳定性条件 3本文讨论动态稳定性与静态稳定性
的相互关系，即当静态平衡稳定性条件得到满足时，

直杆平衡的动态稳定性能否实现 3
设扰动方程（&(）中的变量 !%（ % # &，⋯，&0）存在

以下形式特解：

!% # )% 9;<（’"% ’ ,#%） （ % # &，⋯，&0）3（0-）
由于静态平衡稳定性条件已得到满足，（0-）式中的参
数’为静力学扰动方程（&*）的特征根，且满足纯虚根
条件［"］3将特解（0-）式代入方程（&(4）—（&(:），导出

, # -3 （0&）
这表明各变量 !%（ % # &，⋯，&0）均为弧坐标 "%的一元
函数，与时间 #%无关 3令方程（&(=）—（&(1）中 !·% # -
（ % # 5，$，+），构成 !%（ % # (，⋯，&0）的封闭的常微分
方程组

!!( #（& ’!&）!"， （004）

!!" # %（& ’!&）!(， （006）

!!* # -， （007）

!!&- # !" ’（& ’!&）!&&， （008）

!!&& # % !( %（& ’!&）!&-， （009）

!!&0 # - 3 （00:）
将（0-），（0&）式代入此方程组，从 )%（ % # &，⋯，&0）的
非零解条件导出’的特征方程

’0［’0 ’（& ’!&）
0］0 # - 3 （02）

此特征方程存在两个零根’# -，对应于方程组（00）
的以下常值积分：

!* # 7>?@A，

!&0 # 7>?@A 3 （05）
除零根以外的本征值为纯虚根

’ # B ,（& ’!&）， （0$）
则变量 !%（ % # (，⋯，&0）在一次近似意义下稳定 3表
明动力学方程中增加的扰动因素，即截面速度 ! 和
角速度! 亦相对弧坐标稳定，且与时间变化无关 3
从而证明，当静力学意义的稳定性条件得到满足时，

动力学意义的稳定性条件必同时满足 3

+ 3 结 论

在 C,D7))>::理论基础上讨论弹性杆的动力学问
题时，必须将 EF4<G?>H稳定性理论适用的自变量离
散系统发展为弹性杆模型的双自变量离散系统，稳

定性的基本概念应作相应的扩充 3利用文中导出的
弹性杆动力学方程和运动学关系式，讨论了具有初

扭率的非圆截面直杆平衡的动态稳定性 3证明了在
一次近似意义下，当静态稳定性条件得到满足时，动

态稳定性条件必同时满足 3

［&］ C,D7))>:: I &"$* $ 3 -.%/ )/0., 3 (1#2 3 !" 0"$

［0］ E>H9 J K L &*55 ) 34.1#%5. 6/ (1#2.71#%518 32.649 6: ;81"#%5%#9 5A)
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