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利用 *射线三轴晶衍射和光致发光谱研究了生长参数 +,源流量与!族流量之比对 +,-./0-./多量子阱结构
缺陷（如位错密度和界面粗糙度）和光致发光的影响 1通过对（###"）对称和（!#!"）非对称联动扫描的每一个卫星峰
的!扫描，分别测量出了多量子阱的螺位错和刃位错平均密度，而界面粗糙度则由（###"）对称衍射的卫星峰半高
全宽随级数的变化得出 1试验发现多量子阱中的位错密度特别是刃位错密度和界面粗糙度随 +,源流量与!族源流
量比值的增加而增加，导致室温下光致发光性质的降低，从而也证明了刃位错在 +,-./0-./多量子阱中充当非辐
射复合中心 1试验同时发现此生长参数对刃位错的影响远大于对螺位错的影响 1
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! 9 引 言

-./基半导体材料在制备紫外探测器、发光二
极管、激光二极管和高能高温器件等领域具有广泛

的应用前景，因此近年来越来越引起人们的关

注［!—’］1其中 +,-./合金半导体可以通过改变 +,的
组分获得从可见光到紫外光的发光范围，通常作为

蓝绿发光二极管和激光二极管的有源层［$—!#］1但是
由于 +,-./阱与 -./垒之间以及外延层与衬底之间
存在较大的晶格失配，导致生长过程中不可避免的

出现失配位错 1 研究表明，位错在 +,-./ 和 -./
外延层中通常充当非辐射复合中心［!! : !%］，但在

+,-./0-./多量子阱中的作用却尚未研究清楚 1据我
们所知，目前还没有有关!族氮化物多量子阱中位
错测量方法方面的报道 1本工作通过对多量子阱
（###"）和（!#!"）联动扫描的每一个卫星峰的!扫
描，分别测量出了多量子阱的螺位错和刃位错平均

密度 1此外，生长条件不同造成的界面粗糙度也是影
响多量子阱发光性质的一个重要结构缺陷 1本文研
究了流量比值 ;<+,0（;<+, = ;<-.）对 +,-./0-./多

量子阱位错密度和界面粗糙度，以及对光致发光的

影响 1

" 1 实验及理论

+,!-.! : !/0-./多量子阱样品是在蓝宝石衬底
上用金属有机物化学汽相淀积（<>?@A）法生长的 1
生长时分别用氨气（/6%）、三甲基镓（;<-.）和三甲
基铟（;<+,）作为 /，-.和 +,的反应源，用 6" 作为

载气 1 阱和垒的生长温度分别为 ’!#和 $2#B 1在生
长多量子阱之前，首先在蓝宝石衬底上生长一层

-./缓冲层（)%#B），再在 !#&#B先后生长一层约 !

"C的本征 -./和 ! 1 )"C 的 DE掺杂 -./1最后在多
量子阱结构上面覆盖一层约 %# ,C 的本征 -./
（!#&#B）1所有的样品都包括 !#个周期（其中 +,-./
阱约 % ,C，-./垒厚在 !&—!( ,C范围内），/6% 流

量保持在 2 1 # F0CE,，反应室压强为 &## 3.1样品 G、
样品 H 和样品 ? 的 ;<+,0（;<+, = ;<-.）分别为
#9$#，#9’2和 #92$，+,组分分别为 # 1(，# 1!!和 # 1!& 1
三轴晶 *射线衍射是在 43/ IEJ.KL DFM5!G上测量
的 1室温下的光致发光谱是用 %") ,C的 6N5?O激光
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器作激发光源进行测量的 !
由运动学理论可知，在对称衍射的情况下，多量

子阱的周期!与卫星峰间距!"! 的关系
［"#］为

!"! $ #
%!&’(%")

， （"）

式中#是入射 *射线波长，") 是衬底的布拉格角 !
与单层膜的衍射类似，卫星峰的全宽占据两个

干涉条纹的距离 !因此理想的多量子阱的卫星峰理
论全宽度 " + 应为：

" + $ %!"! ,!，
其中 ! 为周期数 !
多量子阱的界面粗糙度会导致所谓的“-”级卫

星峰宽度保持不变，而其他卫星峰半高全宽会随级

数的增加而加宽 !如果考虑界面粗糙度造成的周期
厚度偏差$按高斯分布时，由动力学理论可知第 #
级卫星峰的半宽度［".］为

"# $ "- /（01 %）",% #!"!·
$
!
， （%）

式中 # 为卫星峰级数，$,!为界面粗糙度 !

实际上 21345,345多量子阱中存在大量位错，

会导致其 *射线衍射的%扫描加宽，因此可以通过

测量每一个卫星峰的%扫描来估算多量子阱中的

平均位错密度 !同时卫星峰的%扫描半高全宽只与

量子阱中的位错密度有关，不会随卫星峰级数而变

化 !通常位错密度&与% 扫描半高全宽’的关系

为［"6］

& $’
% ,（7$%）， （8）

式中 $ 为位错的布拉格矢量 !

8 9 实验结果及讨论

图 "所示是（---%）对称和（"-"%）非对称三轴晶
衍射曲线 !图 "中较强的峰来自作为多量子阱衬底
的厚层 345，其他较弱的峰为多量子阱的卫星峰 !由
图中测出卫星峰间距，并根据（"）式计算出多量子阱
周期值列于表 "中 !

图 " （---%）对称和（"-"%）非对称三轴晶",%#衍射曲线

表 " 21345,345多量子阱样品的测试结果（包括界面粗糙度、

周期值、位错密度）

样品周期,1: 界面粗糙度,; 螺位错密度,"-< &:= % 刃位错密度,"-< &:= %

> "69< 6 !? 8 !" "- !?

) "?98 ? !- % !7 6 !8

@ %%9- 8 !6 8 !< 8 !"

图 %分别示出了各个样品（---%）衍射的卫星峰
半高全宽随级数的变化及其线性拟合曲线 !很明显，
样品 @的拟合曲线斜率最小，样品 >和样品 )的接
近 !根据（%）式，由拟合曲线斜率计算出的各样品界
面粗糙度值列在表 "中 !
根据（8）式，由各个样品的（---%）和（"-"%）衍射
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图 ! （"""!）衍射的卫星峰半高全宽随级数的变化及其

线性拟合曲线

卫星峰的!扫描平均半高全宽计算出的位错密度
也列于表 # $图 %是 &’()*+()*多量子阱中总位错密
度随 ,-&’+（,-&’ . ,-()）比值的变化关系 $很明显，
总的位错密度随 ,-&’+（,-&’ . ,-()）比值的增加而
增大 $图 %中的内插图是一个典型的卫星峰（"""!）

!扫描半高全宽随级数的变化趋势，在小于 /0的
误差范围内可以认为半高全宽不随级数变化 $图 1
示出刃位错和螺位错密度随 ,-&’+（,-&’ . ,-()）比
值的变化关系 $可以看出，螺位错密度变化不大，而
刃位错密度却随 ,-&’+（,-&’ . ,-()）增加而增大 $
这说明 ,-&’+（,-&’ . ,-()）的变化对刃位错的影响
远大于对螺位错的影响 $

图 % 总位错密度随 ,-&’+（,-&’ . ,-()）比值的变化关系

图 /是界面粗糙度随 ,-&’+（,-&’ . ,-()）比值
的变化关系 $从图 /可以看出，,-&’+（,-&’ . ,-()）
比值的增加导致了界面粗糙度的增大 $ 图 2 和
图 3分别示出光致发光谱积分强度和半高全宽随
,-&’+（,-&’ . ,-()）比值的变化关系 $ ,-&’+（,-&’
. ,-()）比值的增加降低了光致发光效率，加宽了

图 1 刃位错和螺位错密度随 ,-&’+（,-&’ . ,-()）比值

的变化关系

发光峰，从而导致发光性质降低 $

图 / 界面粗糙度随 ,-&’+（,-&’ . ,-()）比值的变化关系

图 2 光致发光谱积分强度随 ,-&’+（,-&’ . ,-()）比值

的变化关系

在本工作中，决定界面粗糙度的主要因素是合

金组分的波动 $在 ,-&’流量过量和其他生长参数相
同的条件下，,-&’+（,-&’ . ,-()）比值的增加会增
加 &’组分的波动性，相应地界面粗糙度也会增加 $
这必然会导致阱宽的波动，从而引起量子阱中子带

间相对距离的波动，这很可能是造成本实验中光致
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图 ! 光致发光峰半高全宽随 "#$%&（"#$% ’ "#()）比值

的变化关系

发光峰半高全宽随 "#$%&（"#$% ’ "#()）值增大而加
宽的原因之一 *
由图 +和图 ,可知，比值 "#$%&（"#$% ’ "#()）的

增加导致总的位错密度的增大和多量子阱光致发光

强度的降低 *因此有理由认为位错在 $%()-&()-
多量子阱中充当非辐射复合中心，并且由图 .可以
看出其中刃型位错起主要作用 *文献［/!］的研

究表明，在 ()-中当位错密度超过 /01 234 5时，光致

发光强度随位错密度的变化很小 *图 ,中样品 6和
样品 7的刃位错密度相差较大，而光致发光强度却
差别不大，这可能是在 $%()-&()-多量子阱中当刃
位错密度达到 8 9 /0: 234 5后，非辐射复合中心已经

达到饱和的缘故 *这个结果表明，降低位错密度是提
高 $%()-&()-多量子阱光致发光效率的重要途径 *

. ; 结 论

本文研究了生长参数 "#$%&（"#$% ’ "#()）对
$%()-&()-多量子阱位错密度、界面粗糙度和光致
发光的影响 *试验发现多量子阱中的位错密度和界
面粗糙度随 "#$%&（"#$% ’ "#()）比值的增加而增
加 *其中比值 "#$%&（"#$% ’ "#()）的变化对刃位错
的影响要远大于对螺位错的影响 *这些结构缺陷的
增加导致了室温下光致发光性质的降低，同时也证

明了刃位错在 $%()-&()-多量子阱中充当非辐射复
合中心 *
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