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Abstract

A multiobjective-optimization-based emission spectral tomography algorithm EST is proposed. Iis reconstruction results for
asymmetrical emission coefficient field are studied by numerical simulation with computer. The results show that this algorithm
has faster convergences and higher reconstruction precision than that of traditional algorithms and is suitable for real-time
reconstruction of emission coefficient field with incomplete data. In the experiment of argon-arc plasma diagnosis the three-
dimensional reconstructions of temperature and atomic ionic  density fields are accomplished with this algorithm and the

spectrum relative-intensity method .
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