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采用分子动力学模拟方法，研究了二元混合液体在不同外压作用下的相分离与玻璃转变过程，计算了相分离

液体在玻璃转变过程中的结构和动力学特征 *研究发现，外压会促进相分离的产生，并提高玻璃转变温度，会使!
弛豫出现的温度更高、存在的时间更长，导致系统扩散性降低 *同时还发现，相分离液体的玻璃转变过程存在微观
不均匀现象 *
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! : 引 言

压力是影响合金凝固组织的关键因素之一，快

速冷却或压缩液体可以获得玻璃相［!］*但由于过冷
熔体的热稳定性较差，实验研究压力对玻璃转变的

影响很困难，有关凝固组织与压力间关系研究的报

道甚少［"—+］*而计算机模拟是研究压力对凝固过程
及组织影响的有效途径 *近年来，材料科学工作者开
始借助于分子动力学（;<）模拟方法研究压力对液.
固转变的影响 * =1等在对于纯 >2的研究中发现，高
压使熔体中二十面体非晶原子团数量增加［$，&］，但也

有利于 ?88类晶态原子团的形成 * @40A7等在研究纯
>5凝固时发现，高压下强烈增加了非晶 >5中晶态
原子团的数量［)］*迄今为止人们尚不明确压力对熔
体在冷却过程中形成非晶的影响 *本文应用 ;<模
拟方法，研究高压下二元液体冷却过程，探索压力对

非晶形成的影响 *
对材料中相分离过程的理论和实验研究不但具

有重要的实际意义［’—!+］，而且也是深入理解一级相

变问题的主要方面 *几十年来，对这一问题进行了大
量的理论和实验研究，包括对金属、玻璃、高聚物和

生物材料相分离过程的研究［!$—!’］*一个二元系统从
混溶温度开始进行快速冷却，这个过程驱使两个相

的形成和生长 *相分离主要以两种不相同的方式进
行：处于相图中亚稳定区域的成核生长，或处于不稳

定区域的自发分相（3B1A9C02 CD89/B931E19A）［(］*在自
发分相的过程中，浓度涨落的自发增大导致体系从

均相到不相容的两相转变 *近年来，用计算机模拟方
法研究聚合物相图和相分离动力学的工作日渐增

多［!(—F%］，GD20389和 H9IJ0DKC等用;<模拟方法，采用
=DAA0KC.L9AD3（=L）势、=LM 势和 =L.NO> 势对二元流
体的相分离进行研究［!%—!"，F!］，计算了相分离域尺

寸、结构因子和分子内能，得到相分离域尺寸随时间

按幂规律 !（ "）P "! 生长，发现相分离域的初期生
长指数为 !Q"，后期生长指数为 "QF，还研究了剩余能
随时间的变化关系 *在 ;<研究中，更多的人研究了
相分离过程随时间的演化规律和外压对玻璃转变的

影响，而外压的变化对相分离液体玻璃转变过程影

响以及相分离对玻璃转变影响的研究还未见报道 *

" : 相互作用模型与模拟方法

本文研究的是由 >和 R两类粒子组成的二元
混合系统，>类粒子和 R类粒子之间无相互作用势，
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同类粒子间所用的相互作用势为 !"势，在 !"势的
作用下，异类粒子之间无相互作用，可以表示为

!##（ !）$!%%（ !）$!!"（ !），

!#%（ !）$ &’ （(）

!"势函数的形式为

!!"（ !"#）$"（（#!"#
）() *（#!"#
）+）， （)）

其中"为 !"势垒深度，单位是 ,"·-./*(，#为 !"组元
尺寸，单位是 0，!"#为组分 "，# 粒子间距，单位是 0’
上述势参数的单位是归一化单位，在实际计算

中，需要转化成实际参数 ’我们以 #1原子的势参数
为单位计算得到势参数如下："## $ 23456 ,"7-./，

### $ 236(0，"%% $ &38"## $ (344) ,"7-./，#%% $
&355### $ 23&&&5 0’

9:模拟在 (&&&个粒子的立方盒子中进行，其
中 #粒子占 5&;，%粒子占 )&;，时间步长选取 2 <
(&* (+ =，初始温度为 6&& >，分别在 &，&3?8，(3?8和
)3?8 @AB外压作用下，进行 )&&&&&个步长的模拟以
获得平衡状态，再以 +3? < (&() >7= 的速率降温到
(& >，观察不同外压下体系的相分离过程与玻璃转
变过程，探索外压对相分离液体玻璃转变的影响以

及相分离对玻璃转变的影响 ’

2 3 分析方法

径向分布函数 $（ !）被广泛地应用于液态和非
晶态结构的研究 ’这里我们通过径向分布函数来分
析外压对相分离液体玻璃形成能力的影响 ’其定义
如下：

$（ !）$ (
$

)〈!
"
!
#" "
%（ ! C !" * !#）〉， （2）

其中 $（ !）是 ! 到 ! C D ! 范围内找到一个原子的概

率，$为系统数密度，!为 :E1BF符号，! 为原子的位
置，〈·〉表示对时间求平均 ’
粒子位移平方的平均值称为均方位移（-GBHI

=JKB1GD DE=L/BFG-GHM，9N:），其定义式为

〈"!)〉$ (
%〈!"

!"（ &）I !"（&） )〉， （6）

其中 !"（&）为原子在零时刻的位矢，!"（ &）为原子在 &
时刻的位矢 ’根据 OEH=MGEH扩散定律，9N:随时间的
变化表征了液态原子的扩散行为 ’

9:模拟计算扩散性质有两种方法，即相关函
数求积分的 @1GGHI>KP. 法和对 9N: 求斜率的
OEH=MGEH法 ’可由如下 OEH=MGEH关系得到系统的扩散
系数 ’：

〈 !（ &）* !（&） )〉$ +’& ’ （8）

63 模拟结果与讨论

9:模拟是以相同的降温速率 +3? < (&() >7=使
系统温度由 6&& >降到 (& >’在这个降温过程中，系
统有相分离现象发生，并且相分离程度随外压增加

而增大 ’为了清楚观察，我们对温度为 (&& >时系统
在不同外压作用下的相分离过程进行了可视化显示

（如图 (），图 ( 中分别显示出在 &，&3?8，(3?8 和
)3?8 @AB外压下体系的粒子分布情况 ’为了显示清
楚，图中只画出了 %类粒子的分布，黑色小球代表 %
粒子，空白处是 #粒子 ’我们可以清楚地看出，(&& >
时 %粒子由 & @AB的散乱分布到 )3?8 @AB时的聚集
分布，显示出体系逐渐形成两个不同的相，在 )3?8
@AB时可以明显观察到体系形成了两个分开的相 ’
由图 (可以观察到，在同一温度、不同外压下体系相
分离的程度有所不同，外压越大相分离现象就越明

显，说明外压的增加促进了液体相分离的发生 ’

图 ( %粒子温度为 (&& >时不同外压作用下的粒子分布 图中黑色小球代表 %粒子，空白处是 #粒子 ’为了显示清楚，图中只画出了 %类

粒子的分布 ’（B）& @AB，（P）&3?8 @AB，（F）(3?8 @AB，（D）)3?8 @AB

为了研究外压对相分离液体玻璃转变的影响以 及相分离对玻璃转变的影响，我们观察体系的偏径
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向分布函数，如图 !所示 "从图 !可以看出，温度为
#$$ %时 & 粒子的偏径向分布函数第二峰在 !’()
*+,时劈裂得明显，而在无外压时几乎无劈裂，-$ %
时 .粒子的偏径向分布函数第二峰在 !’() *+,时
劈裂得明显，而无外压时无劈裂 "这说明外压越大，
第二峰发生劈裂时的温度越高，体系玻璃转变越容

易 "但外压越大，偏径向分布函数峰值越大，峰宽越
窄，说明体系的有序度增加，这可以由图 /看出，峰
值随温度升高而减小，并随外压的增加而增大 "

图 ! 体系在 $，$’()，#’()和 !’() *+,外压下的偏径向分布函

数 （,）#$$ %时 &粒子在四种外压下的偏径向分布函数，（0）-$

%时 .粒子在四种外压下的偏径向分布函数

另外，由图 !可以看出，&类粒子的偏径向分布
函数在 #$$ %时就有劈裂发生，发生玻璃转变，而 .
类粒子的偏径向分布函数在 -$ %时才有劈裂发生，
可见两类粒子发生玻璃转变的温度不同 "粒子数多、
尺寸大并且势能大的 &粒子玻璃转变温度高，先形

成玻璃态，而 .粒子玻璃转变温度低，后形成玻璃
态，即体系所形成的两相发生玻璃转变的先后顺序

不同、温度不同，说明这种相分离液体在玻璃转变过

程中存在微观不均匀现象 "
外压以及相分离对体系的影响也可以由体系偏

径向分布函数第一峰峰值 !1,2随温度及外压的变化

看出（如图 /）" !1,2随温度的增加而减小，高温时粒

子呈均匀分布，粒子周围同类粒子数相对较少，随温

度降低，同类粒子在外压及势函数作用下发生聚集

并逐渐发生相分离 "这使 !1,2逐渐增大 "而且外压愈
大，!1,2愈大 "但是，体系的两相受外压的影响有所
不同 "随外压增加 &粒子的 !1,2变化幅度较大，而 .
粒子的 !1,2变化幅度较小，如图 /所示 "这是由于 .
粒子尺寸小、所占比例小，受外压作用较快聚集，形

成的相分离域比较稳定，所以 !1,2变化幅度不大；而

&粒子所占比例大，几乎分布于整个盒子，受外压影

图 / 体系偏径向分布函数第一峰峰值在 $，$’()，#’()和 !’()

*+,外压下随温度的变化 （,）&粒子偏径向分布函数第一峰峰

值在不同外压下随温度的变化，（0）.粒子偏径向分布函数第一

峰峰值在不同外压下随温度的变化
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响明显，!!"#变化幅度大 $

图 % 体系扩散系数 "在 &，&’()，*’()和 +’() ,-"外压下随温

度 #的变化 （"）.粒子的扩散系数在四种外压下随温度的变

化，（/）0粒子的扩散系数在四种外压下随温度的变化

我们模拟了粒子的扩散系数随温度的变化过

程 $根据（)）式，可以计算出粒子的扩散系数，得到扩
散系数随温度变化的 "1# 曲线（图 %），由此可以观
察到粒子扩散系数随温度的降低而减小，当温度在

*& 2时两种粒子的扩散系数基本相同，接近零 $此
时粒子是被冻结的，扩散性很弱 $系统的扩散性随外
压的增加而降低，高压下粒子的扩散性远低于无外

压时粒子的扩散性，并且高压时粒子较快地被冻结

住，而且 .粒子被冻结的温度比 0粒子被冻结的温
度要高很多，在 +’() ,-"外压下，.粒子在 *&& 2时
就被冻结了，而 0粒子被冻结的温度大约在 %& 2，
这和粒子的偏径向分布函数图相对应，.粒子的玻
璃转变温度更高些 $这也说明了相分离改变了液体
玻璃转变温度，使液体在玻璃转变过程中存在微观

不均匀现象 $这也可以由系统 345曲线看出（如图
)）$从图 )可以看出，345曲线随时间演化逐渐出现

一平台，粒子逐渐被周围粒子束缚住，即出现笼子效

应，这是!弛豫阶段，在!弛豫阶段以后，345曲线
随着时间增长又逐渐上升，这是由于粒子逐渐逃脱

笼子束缚，而进入"弛豫阶段 $由图 )还可以看出，
同一温度下，外压越大，平台越明显 $这说明在外压
作用下粒子越容易被束缚，粒子逃出笼子所需时间

越长，即!弛豫时间变得越长 $比较图 )（"）和（/）可
以看出，在相同压力下，.粒子在 *&& 2时出现明显
的!弛豫，而 0粒子在 %& 2时才出现!弛豫，并且
不明显，这和体系的偏径向分布函数图以及 "1# 曲
线一样显示出系统的微观不均匀特征 $

图 ) 体系 345在 &，&’()，*’()和 +’() ,-"外压下随时间的演

化 （"）.粒子 *&& 2时在不同外压下的 345，（/）0粒子 %& 2时

在不同外压下的 345

综上所述，由 .粒子和 0粒子组成的二元混合
系统快速降温过程得到相分离液体并发生玻璃转

变 $外压越大，体系发生相分离的温度和玻璃转变温
度越高，扩散性越弱；相同外压下，分离的两相玻璃

转变温度不同，.粒子组成的相玻璃转变温度高于
0粒子组成的相玻璃转变温度，系统在玻璃转变过
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程中出现微观不均匀现象 !

" # 结 论

本文用 $%模拟方法研究了二元混合体系随温
度的生长动力学，计算了相分离液体在玻璃转变过

程中的结构和动力学特征，并讨论了不同的外压对

分相过程以及玻璃转变过程的影响规律，探讨了相

分离对玻璃转变的影响 !所得结论如下：
&）外压促进液体相分离现象的发生 !
’）外压越大，粒子被冻结得越快，玻璃转变温度

越高，即外压促进液体形成玻璃态 !
(）液体发生相分离后，两相的玻璃转变温度不

同，使玻璃转变过程存在微观不均匀现象 !
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