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ABSTRACT

The thermodynamic functions of an ideal substance represented by van der
Waals equation are ebtained with the help of the condition that these fuunctions
reduce to those of a perfect gas in the limiting case of vanisning prossure. The
volumes of the liquid state and gas state in coexistonce as determined by Maxwsall's
rule of equal aress are expressed in a parametric form. Tbe nature of the depen-
dence of the constants @ and 4 on the chemical composition of tho gas is briefly
considered.

1. The thermodynamie funcl.ons

The conscquences of van der Waals equation have beep very fully investi-
gated!, but there still remaia same points which may be of interast to discuss

here. The equacion of state will be taken in a slightly more general form:
. \ &
(7/ 4 "\‘n""‘.)‘(“’ ~ b} = NIT, €3

which reduces to the original van der Waals eguation when n-0 and to Berthe-
lot's equation when n=1. N 1is the number of moles. and the constants a and
b refer to the whole gas.

In order to obtain the thermodynamic {unctions, the simplest way is to find
the free energy of Helmboitz first, because the free energy is a characteristic
function for the independent variables 7 and ¥ so that all other thermody-
namie functions can be deduced from it. In the equation '

of
P==0v

we substitute the expression of p given by (1) and integrate.. The result is

1. See. foxr example. Hand buck der Phpsfk X.(1224), pn. 125-222,
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I'= = NRTIn(V-by ~ By *+ G,

where € is a oonstant of intedration depending on the temperature.  To deter-
mine C we utilize the fact that when the voluine becomes very large the gas
approaches a perfect gas. tence
P e NRT I Veb) — 8 (Chor - 78, 1 3
) o - N DY —0) = oy Fops P Co?T = FoJNRE S PO {2
where Cp 18 the heat capacity {(at constant voluine; of the das in the bmiting
case of vanishing pressure or infinite volume, avd U, and S, are the epergy

. ¢
and entropy constants respectively. Cp depends only on the temperature.
The other thermodyhamic functious are

_ e 8 F . (541 )cz o o ..

U=y =~ L by Codl o, (81
aF na Ch

s:-,(,j~~.:1\1“1n(1 wb) | "dT 4 8. (4)
s I\/RTV nt-Na ¢ o, .

H=U+4pV =y T Ay ‘*! Cod¥ -+ U, £y

'RT 9
G - ' Lr })V — ‘\I)l"lln '\I/-—'bl L}\ILQV 2a

Voo T IV
4T : .
..q’}’(a-’szSdT—Ts.sm- i6)
The heat capacity. at constant volume is
K n(nt-1)a 7
Co =': oT = Cu {- (T';*;V:' . s

|

This is independent cf volume when n=0. Using the well-known thermodynamic
relation for C,~Cy, we tind

2. Similar results ,have been obtained by J. J. van Laar. and R. Lorenz
{Zeit. anorg. u. alIg. Chem 14.) (1925), 239) by’ using & more comjplicated
method. Professor Tzu.ching Huang of tle Department of G}"e'mstry informed mo
of this work after my paper was submitted to him, aud I wish {o express my
gratityde to him.
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G Cp o VET™VE & ma(V—DY .
P E A N R s 2a(V-b)y;° (8
The above method of ohtaining the thermadynamic functions is applicable to
any other eqnation of state of gases. Ior example, if the equation of state is
expressed as a power series of 1/V in the form

. .. B C
pV = NRT + ; -+ Ve A {9)
we have
¢ N g 4 B .
A
_a ‘l J Codl T8  Lin . (10)

On the ather hand, if the equation of state is expressed ss a power serica ol p @
pv = NRT - Bp -+ Op* 4= ==, (1)
then it is more convenient to determine the Gisbs function firet, and the resull is
o= NETIngy -+ By 2000 4=

'111! NP me .
T—; o {S Cpdl - T8, 4 He s

3

Co. ondonagiion

The pressire of the saturated vapour s determined by the well-known rule
of equal nreas « Maxwell).  This rule can be deduced {ram the eondition of mini-

?

Fig. 1< Isotherizais of Gibbs fanction. - -
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mum F arconstant 7 and V. It can also be deduced fram the evndivan of
minimum G at constant 7 and 7. The graph of G is shown n fig. 1. 1t
is seen that when the temperature is below the critical tempemnture (7.}, the
curve has a double point { P, J). The branches AP, B{ bave lower values of
G than the branches PM, MN, NQ. The part AP represents ibe liquid state
and the part [7( represents the gas state. The pressure p, of the saturated

vapour is the pressure at £ or (. This pressure is determined by the equation

Gp = Go. (1)

/

or FptpsV, = Fo+ a4V,

where V;, V, are the volumes of liquid and gas respectively. This can be

written as
. Vg
Pl Vo=V ) = f 2 dv. (13
&
which is the rule of equal areas.
Substitating (@) into (13), we obtain
VY A\/RT’D'[ %20
~ NRTh {V; =b} + b "y,
. . .NRTIQ 2a
== NETW (Vo=8) 5, o3 —am, - (14
From (1) we have :
NRT e NKT @ ]
Vg—b" ﬁwy‘a:' (10}

= V-8 VT

The equations (14) and (15) detefﬁif‘né}_he\three quahtities ps. V. Vg a8 func-
tions of temperature. ‘ L !
<y 2 3

V, = b= a(Vg—b). {16)

We shall use « as a parameter and express other quantities in terms of it.

Eliminating 7 from {14) and (15) and using (16); we obtain
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Vo 1—n n=alna-—1

b % 7a T (lderlna i 2l-a) (7

Vi (7—(z\(1r‘a7~‘-——q\
b Ul—a‘lna——;xl—al (s

prsr o O oV o =br (Y —E) (1)
= NR IWHE . :

i
When a increases from 0 to 1, NRI"#! b.!a,'m}:reases fron N to 8({27, Vg
de>reases from « to 3b, V, increascs from b to 3b. The critical point oor-

respmds to g == 1.

3. The hetcrugencous 1€gion

When V' lies between ¥, and i’y the substance’is.a heterogencous mix-
ture of gas and liquid. 1f ¢ is the fraction of gas, then -~ .~ 5.

Vo=zig+ 1=V, C)
The free energy is also of this form :
F=gbgt (=aiFpy 0 (2])

from which one-tan see that all other thermodynamic functions are of the same
form.
From (7) we obtain

Cot — Cog = EL”,\;‘*}- *l“) )

- The ditference between Cpi and Cpy can be obtained from (8). The expres-
gion is not written down on account of its oémplexntxr 1t is"seenfrom {22) that
Cpt = Cpg. This is in qualitative ag,reemeﬁt ‘with observed facts. [« 2o <
In fig. 2 are shown xsothermals of (Cp- CU)INR Only the case n=0 is
shown. The carves in the case n>0 ere similar. "For 7>T, the curve has
a maximum at V = Voo At T =T, this maximum- becomes infjnite. For
T<T: the curve becomes mimue at V', and ¥, which are the volumes cot-
‘respauding respectively to a minimum and a max:mum i the p—V gfﬂph-
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Fig. 2-TIsothermals of (£,,—Cu)/NE in the case of 7=0.

Betwéen V js and ViN:the value of C,—Cv becomes negative. But the volumes
Vy and V'~ lie between 17:and vy, .and the part of the curve lying in this
region should be replaced by a straight line.

The latent heat of evaporation is obtained from (5Y):

_ . . _(n42a b o

b= Hy = Hi = NRT(”"’?”’{lei'nnvgw‘ (Fa-bj¥ by /+ (2
“When the temperaturs increases from 0 to the critical temperature the quantity
LINRT decreases from « to 0.

It can be verified by a somewhat complicated calcalation that Clapeyron's
equation holds:

dps L
d

= TiTo-V1) °

o]

With the help of the expression (23). for the latent heat the specific heat of
the saturated vapour can. be calculated.

4. The Joule-Thomson cffeet

‘For the Joule-Thomson etiect ‘we have

(39), mm gy (L) o VLNRIZVD - (a0t

op 3p TS NRTT®YVs Z2g(V=b)?
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The denominator is proportional to the bulk modulus of elasticity and is always
positive outside the heterogeneous region.  The sign of the Joule-Thomson coeffi-
cient (8T[3p) y is therefore solely determined by the numerator. ‘Tﬁérc s a
cooling effect when

NRTNH b < am-{-‘:) \1__, Z,[ ’ =

and a heating elfect m the opposi‘e tase. The wversion temperature at which
the Joule-Thomson coefficient vanishes is given by

NRT"™'b = a(ns-2)(1-b/} 5 T

This equatian shows that the inversion temperature is a function of the volume.
Solving for V' from (25) and substituting into (1}, we obtain the debendqnce af
the inversion temperature on pressure:
NRT /\/ (n-21a ‘ ( a1 aa-2)a ,
- VRS Y - wlH o Ay, 26
P (n42)b \VNR7™b .1> YN zvﬁfT"“b) (26)

When p is greater than the value given by this equation, the Joule-Thomson
c:)efficient is negative and there is a heating effect. When 9 !is less than-this
value, the Jonle-Thomson coefficient i8 positive and there is a ¢doling effect. -

In fig. S are piotted the curves of inversion temperatures. The experimental

data for pitrogen? ate given as circles for comparison.

Fig. S —Curves of inversion temperatures in Joule-Thomson effect

3. J. R. Reehuck and H. Osterterg; Phps. Rév. {84 1930 ). 460s
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5. Migture of van der Waala gases

_ Suppose that the gas consists of k kinds of molecules with N; moles of
the kind i. II we assume van der Waals equation (1) to apply to the mixture
we must agsume

and assume @ and b to be functions of N, Ths simplest assumptions con-
cemmg a and ¥ omustent with the caudxt.on of homojcneity are (l.e., b
must be a homozeneous function of degree one in the N's in order that & may
increase proportionately to V when the amount Qf the gas is increased withont
changing its other properties): | '

=3y @iy N, Ny, (gij=aji)s b=Y% 0N, (28

%7
‘where a;j end b; are constants. The earlier assumption‘ on b is also a
quadratic dependence on the N's, but such an assumption has neither theoretical
nor experimental foundation. From recent investigations of statistical mechanica
it appears that a linear dependenoce of b on the IN‘s is more reasonable.

The quantity b; may be naively interpreted as four times the aggregate
volume of ono mole of the gas. molecules of kind 1. The quantity @;; may be
interpreted as the constant of cohesive force betweexi a molecule of kind 4 and
one of kind j. ' :

Using the condition that the fre¢ energy expressiox; reduces to that of a per.
fect gas-mixture in the li‘_mit'ing case otiv.atiighing pressure, we obtain ‘

e N, a
P = leRTlﬂm —T-;,'i‘/
i i

-[-Z;v {"Tj'l‘ C,’;,-dT-Tsl-a«}-uio}. {23

4. A linear dependence of 4 on the N's was aleo assumad by van Laar and
Lorenz (loc. cit. 2). Cf. a paper by J. A. Beattie and S. Tkebara, Prac.
Amer Acad. Arts and Sci. 64(1930), 127; espevially p. 131.
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where ¢7. are the molar heat canacities ol the various emuponenis in the

e ni
luniting case of vanishing pressure, and @, awd o are the respective energy
and entropy constants.
From (29) all otirer thermodynamic functions con be deduced ip the vaual

av. la particuler, the chemical poropiial of U component « s
v.ay 1

alt " R .
= g, =T AT et (0%
With
a r7' . ) .
H;’{‘j y =~ 7 j T j « m+1t ylj - S v Mg (7
. rapey v & ]tl \ —T:-kf : - .-
and - B Inp;* = K7 In '-’ b + b T ony i_ Aij N e (92

The quantty ?’7‘* iz ralled the “part.al fugat.'ity" of the component i by C.
N. Lewis. As V-»u, we bave p;*~N;ET[V, whichis the partial pressure
of the component i- .



