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ABSTRACT

The fotm of quantam theory of radiation introiucad by Heisenbarg ie discuased
grom the point of wiew of the traosformation theory of quantum electradynamics.
A general investigation of the connection between Heisenberg's method and Dirac's

. method of variation of parameters is given. The extension of Heisenberg!s method
Lo eigenvalue problems, which was first carried out by Weisskopf for the self enorgy
of the electron: is presented in such & way as 1o show more clearly its quantum
mechanical interpretation. A geueral proof of the equivalence of’ We isskopf's ma-
tbod and tbe method of the perturbation theorr of gtatienary states in quantum
joechanics is given.

1. Introduction.

Heisenberg! introduced in 1931 a form of quantum theory of radiatin which
seems at first sight to rest on a theoretical basis essent ialiy different from that of
the original theory developed by Dirac* with the help of his method of variation ot
parameters. In Heisenberg’s treatment of the interaction of the electrons and the
electromagoetic field, no use 18 made of their Hamiltonians and the Schroedinger
equations for their representatives. The theory is based on Maxwell’'s equations
and Dirac’s equation for the electromagnetic {ield and electron waves respectively,
and these equations are integrated with respect to time in the same way as in
the classical theory. The only difference of Heisenberg’s theory from the classical
theory is that the field variables are regarded as operators instead of ordinary
numbers. The quantum conditions for these operators lead at once to the physical

1. Heiscnberg, Ann. d. Thys. 2, 338 (1931)-
2. Dirac, Proc. Roy. Soc. A. (74, 243, 710 (1927).
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jnterpretation of the theory, according to whioh the quantized waves are correlated
to the emission and absorption operators for the periicles srising frow. second
quantization. It was shown by Heisenberg that hiv method gavo the same
resulis as Dirac's method for the pheaomena of emission, absorpiion aud scat-
tering of radiation iield by electrons.

Heisenborg's form of quantum theory of radiation has a much closer resem-
blanoe to the classical theory than Dirac’s, especially when ihe classical theory
is interpreted according to Bohr's Correspoudence Principle.  Itis for this reason
that Heisenberg's method provides a more conveuient mathemiatical basis for
ghowing the analosy between the classical and quantum theorics of radistion,
which is often a useful guide for further progress, and for justifring the Correspon-
dence Principle from the theoretical point of view.

Heisenberg's method can also be applied 0 callision probiciis such a3 that
of the retarded interaction of clectrons. Tnis was done vy M ller®, who obtaived
a collision crass section confirmed by later work based on the uicihod of variation
of pafémeters‘- B

From the point of view of general theory it is important to study ihe connec-
tion between the two forms of quantum theory oi radiation. For this purposs
,‘it is not sufficient to demonstrate that the two methods are equivalent inerely
on the ground that they always lead to identicai results in practical probiems.
‘One has to go deeper into the physical iaterpretation and mathematical
fm:malism of quantum electrodynamics, in order o establish the connection
“between the two methods on a more gqnerai basis. Tne situation may bz
compared with that in the early stage of.development of quantum mechanics.
The matrix mechanics introduced by Hejsenberg and the wave mechanica intro-

_duced by Schroedingey appeared at first to be esgentiaily diiferent theories. A
clear understanding of the equivalence of the two theories, alter it had been
established by Schroedinger.;was first provided by the transformation theory of
Dirac and Jordan. According to Dirac®, the two theories are just iwo ‘‘pictures’

. of the same states of a dynamical system. Dirac showed that the comnection

between the two theories oould be understood very satisfactorily with the belp of
the transiormation theory.

8. Mdller, 7s. f. Phys. 70, 736(1951)7 Ann, d, Phys. 14, 531(1932) «
4, Heitler, Quantum Theory of Radiation. 1956.
6. Dirac, The Principles of Quantum Mechanics, socond edition, 19354
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The situarion in the quantum theory of radintion ig similar. 1t igclear that
Heisenberg's theory of radiation. which deals directly with the variation of
operators reprasonting field variables of electron and electromadnetic waves,
oorresponds to the Lieisenberg picture of guantum theory. As will be shiwn in
£2, the coonection heiwcen the two forms of quantum theory of radiation can
be obtained with the help of the transformation theory on the same lines as
Dirac’s work.

In dealing with the phenomena of emission, absorption’ and scattering, there
is no need to consider the Hamiltonian of the svstam of electrons and electro-
magnetic field. It becomes necessary, however, to incorporate the idea of the
Hamiltonian into Heisenberg’s mathematical scheme, when we wish to study
the change in energy levels cavsed by the interaction between the electrons and
electromagnetic ficld. This extension of Heisenberg's method was deieloped by
‘Weisskopf® in his calculation of the self energy of the electron. - Weisslopf cal-
culated the self energy of the electron according to both the oue-electron theory
and the positron theory.  This problem had previously been investigated by
geveral authors on the one-electron theory, the most complete result for a free
electron being that obtained by Waller’. As in the other cases mentioned above,
Weisskopf’s result for the one-electron theory was found to be in’ complete
-agreement with Waller's. '

Like Heisenberg's treatment of radiation, Weisskopi's treatment of thz self
energy problem has the advantage of bringing out the analody betwecn the clas-
sical and quantum theories. It enables us to trace the origin of the diverdencies
of quantized field theory, which are mixed up in the works of the other authors.
On the other hand, its physical meaning is not quite obvious from the point of
view of the quantum theory, and its connection with the ordinary perturbatidn
theory in quantum theory is not clear. It will be my object to discuss the quan-
tum mechanical interpretation of Weisskopf's treatment and the mathematical
 equivalence of Weisskopf’s method and the ordinary pertarbation method in 3.

Throughout this paper we confine our attention to the transverse part of the
electromagnetic field, which is related to the light quanta and is treated diffe-

6. Weisskopf, Zs. f. Phys. §9, 27 (1934); 90, 817 (19%4); Phbys. Rev. 56
72 (1939) . ' '
7. Waller, Zs. f. Phys. 62, 673 (1930).
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rently in the clagsicel and quantum theories. ‘We sha | leave out of actount the-
clasgical longitudinal part of the clectromagnetic field and the CONSEQUEn 0es t.hat;
follow from its mathematical treaument.

Dirac’'s new bracket notation® will be used.

2, Thcory of Transitions.

Heisenberg’s theory of ermssxon absorption and scattering is applicable to
a single clectron as well as to several clectrons. As the dencralization from the
case of a single electron to the case of several electrons ddes not invalve anv
essential change in the mathomatical method, we shall for convemencc dlSCHS‘!
only the cage of one electron in the followmg considerations. '

Hexsan‘wr 's the)ry of the mteracn:m of an electron thh the redxauon fxe!d
ig based on the f>llowing fundamental assumptions:

1. lhe electron- wave is* debcnbed by a \«ave fonction with four components,
1;/(:2 Y, z t), which satisfics the Dirac equatvn

fm——-{-ca ( v+ A){-’?Mfﬂ} N £11

Unlike the wave function in the original theery:of Dirac, the fupction %/ is:here
regariled as an operator; 1f we expand- - in-the forin
3 ﬁnA

Yr = z an’\g)a‘:‘}.‘ \, -’P,,L:_‘).

Lo
—_

n

whetp' th;; N ;ci;fs ar,;hperators and the ¥,'s are ordinary Dirac'wave Tanctisis’
3 Pn 7}'h. l‘“
thal are n«_ai'inalizea in a volame V" and sa:Sity Gerelnriybee

(ot osivd &b ?

.the1 the expeciatin value of the operator '@, {i¥a, ) ‘s interpreted as the
probability of finding the clettron ih the statt n -&t<time- & * The variations of

3  Tirac. I'roe, Gamb. Puilo 5o, 335,
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these probabilities with time give the transition probabilities between the
different states of the electron. '

2. The vecior potential A of the electromagnetic ficld is determined by
the current density of the electron wave, 7, according to the wave equation of
the classical electramagne;ic theory

(LL

ct o
where T ‘ ‘ . o A
. ) . 5“2'001{1 al;/ . : - e . (G’
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the quantmes A and o bemg Operators. The elemnc and xragnmc fia dstrengthe
E and H are derived from A as ysual. In quantum theory it is only nocessary
to consider the transverse part.of -4, which can be expanded lu tht- iarm
IR T nR DI ST At O L § VA LT ADNE T ~iK, e e

A= BT (bra ettty ot oty o

b
n

o .
where the b’s and b !’s are.operatars and the 4’8 are unit vectors in the directions

of polanzatlon. Thre expectation value of b, r(t)b ‘%) gives the probability of
tinding a light'quantum in‘the state n at time &. - ‘

Let us consider now these assumptiods in accordance with_the generel ‘Tringj-
ples of quantum theory. Let the Hamiltonian of the whole system be denoted by

H‘:H,,'.*,Hb‘-;—H,.. ' (8)

where Ha 1s the Hamllton;an of the electron. Hy the Parmxto-uan of the ra-
dlatlon neld and H; the operator represenfmg the yertutbmg ener y ansmg from
the interaction between the elec:ron and the radiation field. We work with a
Heiaenberg representation for the vnpertrubed system, j.c. a representation in
which H, 4- Hp is.diagonal, and take as basic states the states for which the
electron has definite values of energy and momentum together with a definite
direction of spin, and the radiation field consists of light quanta with definite
values of energy and momentum and definite direction of polarization. We use
e general set of «’s and f’s to labe] the representatives for the glectron and
‘radiation field respectively, 80 qhat 3 basxc gtate is. roptesentcd by a vector of
the form |a’f’ >. The representatxves of the operaiors "Hg, Hp, H; in this
representation are
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<a'f 1Hg!a"ﬁ">= 8;:»»5,»_" q’;,(iC.’\'.o: C T - Bme\9 , do,
) 1 4 3 . . ‘T a

LFA ‘ add PR }
<a'f’ {Hb“a,p > = 80'();" Sﬁ’rfj" I"b“p’)- \ (Q)
!
’ rives o 1 ¢ o ! . !
<a'f Iﬁz;fa.’ B> = —~ cj ‘£'1,<;>’, 1A G, de, ’]
S a

The representatives of any state of the who'c system vary with time accord-
ing to the Schroedinger equations

¢

Lod ) o
i (<ar’ )= § <a's e 2al >

10300

Dirac's method ‘of variation of parame ers consists in solving these ditferential
equations for the representatives <a’fs’| >, <@’ >. Alternatively we can
determine the variation of operators with time in the -Heisenberg picture, in
which the vectors >, < sre fixed and the ba.ic vectors ja’p’ >, <a’/’| vary
with time accarding to the formulae

g};_d; !a'ﬂ'»> = = Hjad'8 >, if a <a’'p L= <a'o"zH
dt | . at 1 [
80 that any operator & satisfies the equatin e
odE . e
12 =T HT, S : .
with {(&H]=fH-HE.

Consider first Heisenberg's treatment of the -electron waves. Heisenberg's
method can be understood from two different points of view. We may apply to
the electron waves the procedure of second quantization® and meke use of the
commutation relations for partfdes satisfying ;‘né Fermi-Dirac statistics, formu-

9. Pauli, Handiuch der Phyeiks XXIV/l. 208 (1933):
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1

;eted by Jordan and Wigner and by Heigenberg and Fauli.'* We may al.3 proceed
on the basis of one-particle theory without considering the creation or annibi-
lation of electron pairs. In order to compare with the-theory: of radiation n»
originally developa1by Dirac beiyre the pasitron theory came into existeace, we
shall adant the second paint of vie o

For the purpose of passing to Hoxsenberg‘s theory we introduce a fictitinvs
zero state for the clestran, repres‘enteq by a vector of the form 16>, and alt
emission and absorption operators GZ, , Cor for the electron, with the matrix

elcments

an{ v > 8 " 866,;
. , (12)
It follows from (12) that the operators ¢ , c(i . may be written intha forus

1 i
<<1"'F;” | c , '\m”’ mll > = <a”’ Wr‘ ¢ Z'

N
4 ’ N
o a a Vopt T

' : - ,
. j e LN N .
Gq' = \ 05" ><-a' i’ 1 v Ci;,. = Z-« : Wl 0‘34{‘( N 137

tc summation over 37 ensuring' that thése operatods- do et -give rige trr v
transition irom one stat€ of the radiation field to’dnothers: Ritrodicing fisndver
operators Ha’a" which have the representatives

v | B alVE" s = i ati e
<a”¥ \Ha’a"}“wb > =8 g Syrvy<w B T @B > (11,
we have the relation

! T spe " 1
;’ <?"'B'\ z Cap H“,au Ca”‘al‘t’lo s = <a g 'i"c(‘l”’ H <"

.C (PRAE
r 0 v QIV} e
a «

al
g a”/ﬂr ‘f’Hial"'ﬁ”>

or e ) :
Q - Z Cor Ha"a" cd.,,,z_ (1%

In the Hexsenberg pxcture the opﬁrator € Var.es ‘Wwith time: arycordmg to
equation (11) with 2'=¢ ; namely ~ CE e

10. Jordan and Wigner, -Zs. {, Phys. 47, 631 (192r )’ llusenb 'r' a.:l l‘gu‘!
Zs. f. Phys. 56, 1 (1929).
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dca, 5
ir % e H}:[c, N IS I
di [ al, a’, ae o T @ T
W
On account of the relations
P T L T
W " e T vata Yy e T Ca’a” Tq"”"
and c ,C, =9
Q a
dc ,
. q. (4
e h ! 2= ] o’ f
we iiave 15 dz Z la/r‘l a” . {]))
an,

The operatars !}a,r,, are constant operators, as may he easily verified f{rom
A

(11), (14) and (13). Equation (16) gives

d Z Z S

T i {(r = 1 i i . = H ” ! N

30 di Ca, fa, ) I & I &' ez I (‘au pau
a, r 1 "

a'q a

Hence, if we put U = ¢

i
S pt(—mp e Yoo, v,
iwdyac® Z,“ “
at a

L H(D) - l Bib)t
=(Hat e’ Hre ) ¥ (18)
which is just (1). Comparing (17) with (2) we sce that

= +(Hg-+Hp)t

P i
CG’ = aar a“"' 7:‘ . ‘ (19)

The expectaiion value of the operator a ba, is
Q aQ

T T _ T
<a,a,>=<Cyc, >= Z <008 > <o | ey >

" (29)

= Z §|<("5'1>‘
g ‘
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! . 2
Now the expression Z b2 rx'/i’\ >“ represents the probebility of finding the
i \
3
eleotron in the state a’ in Dirac’s theory. Heace <a;,aa, > gives the same

probability in the Heisenberg picture, in agrooment with Heigsonberg's first as-
sumption.
Let us eongider now Heisenberg's treatment of the radiation ficld. Egua-

w
-iwnk dives

tion (11) applied with & =
’“‘—("n T 2 Doy 1 = e 01 ) e (b

From (7) and (9),

it

iy Z b/E by S, .

h {b e—iw”tja . 'ir:‘ik” Ty
“Nev Z Vk A" S

+ b ewntj Gneie L dv} . (21)

o)
~
|

Henoe, on aoccount of the commutation relations

-[b,,,b,,,],:[b:‘,,bl]=0. {bn'bz;}:an;);- (22)
we have
i 4z (b 0 Tn) = iy by o~ »ﬁ; [en-ic™nTa ()
Similarly we obtain
A L Y P +J i Jen - idn T Tan 2
where n” stands for the radiation oscillator with _k v =~ kqo From (23)

and (24) we obtain
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it gz (b0 2nt e b}:, Upps b } - Twplbpc —twpl b,‘” e iaj,, 1 ),
e —jw 2w ,,.t : , —4u,l : TP A
v dt { b" < ‘Lk b,‘” v ) = iz“'rtlbn e i (?I, c it )
[ ¢ Y .
i H Vo L S do
| Py e -
wheace
R W B S B L A S L STk T g
W 1 - U, 2 - = wotod - 2.
‘\{lt* n ) n " ’ V o o ¢

(20),

This is, however. st what one abisins from the wave equarion (0} with the
help of (7).

The cquivaionce 0f tiie two f{orms of quantum theory of radiation is thus

completeiy proved.

o

8. Eigenialso Probiens.

As was first shown by Weisskopf for the self energy of the electron, it is
possible to apply lleiscnberg's method to calculate the change in energy levels
of stationary states caused by a perturbation. We shall consider below a general
type of problems of which the preblem of self encrgy of the electron and that of
the intcraction between electrons through the medium of electromagnetic ficld
are special cases. ‘

Tne perturbation of etgti(mm'y states in quantum theory can be consxpered
eithor in the Heisenberg picture or in the Schroedinger picture. The eonncetion
betwecn the two pictures has been discussed by Heisenberg'®- ‘We choosc bere
the Schroedinger picture in which the operators are fixed and an eigen > repre-
senting a statipnary state varies with time according to the simple harmonic law.
A stationary state of the perturbed system is then répresemed by an eigen vectm

2
H't

jf-“ [y’ >. where Ii’ is the eigenvalue of the total encrgy

of the form ¢

and |7’ > i3 & constant vector satisiying the equation

il.  Heisenborg, The Plugical rineipies of the Quantum Theory, 1930,
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H|V> = H'|V>. (23)

|7y’ > is mssumed to be normalized.
We oconsider problems in which the Hamiltonian of the whole system 1is

equal to
H= HB,+ AH;, (27)

where [, is the Hamiltonian of the unperturbed system, AFH; the perturbing
energy, A asmall parameter, F, and F, being inderendent of A. It is
agsumed that 7, is the product of two operators, A and B, namely

B, = AB, (28)

and that all the nratrix elements of H, refering to two stationary states of the
anperturbed system with the same encrgy are equal to zero, i.e.

<V, 018,|v", 0> =0 (Ey = H,"), (20)

where [/, 0> denotes an eigen vector of the unperturbed system corresponding
to the eigen vector |+’ > in the perturbed systen:, satisfying the equation

Eo V. 0> = [/ |7, 0>. (20)

We shall work in the Heisenberg representation whose basic states are repre-

gented by the vectors |v’.0>.
[v’> and H’ can be expanded in powers of A, thus

1]

(V> = [V, 0> + AV, 1> Ay, 2 4 e, (31)
H" = B0 +A’,Hp(1‘. +Az H’ _i_,_,. (32)

We shall calculate H’ to the second order oi accuracy. Proceeding as in the

ordinary perturbation theory, we find
H’ (Y = HY, (33)
H' (YW =<V, 0{Ei7.0>=0 ) (24)

by (29), and
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‘Tn the following we shall need also the first-order corrections for the representa-
tives of the eigenvector |+’ > and of any operator Z, for which the {ollowing
relations exist: '

o (Y24 . ’ . r "‘( 1 } Ter . .
TR SN = 2y 0Vl = <t A0 ) Z

Hr —n- {36)
=0 =y S
VIS = 2 0 E] > - —<v S0 T (37)

The uﬂ(.-\lldthDo 01 seli enutgy by Waller aud othcro were based on cquation
( D ). Procwduw o the same lines as Heisenberg in ra Lation ‘provicing, Welss-
ltopl obtained another general formula, which was shown to lead o the same
result as (35). In the following we shall first give a presemiation of Weiss-
kopi's method in such a way as to show more clearly its quantuin mechanical
interpretation, and then give a direct prooi of tile muivalemé of the iwo
methods. . L

The eigenvalue E’ may be expanded aa‘;(b:dmg to Tayior's theorem, thus

y ) o dir AT dEH ‘ .
Bf= i, oy ]\(xl,x' In=o 2 \ane = (8)

Equating the right-haund sides of (32) and (381 we ing
4 2 )

H’iey — (}1’)/\':” , (39)
dH'

By = (g )/\ 0. (40)
) 1 /d*H’

Jri{2y —~

A7 =g <d)\,‘-' ,)A:.(), (H)

etc. Now it follows from the oa'ldmon of normalization of the cigenvectors that:
<V =] o (12)
and H' = <V |E|YV > . (43)

On differentiating with respect to A we find from these cquations
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Fi‘i{ < ViV } =0, l
dH’ as Al | (44)
"7dh<—‘H, {<Y"Y }'*‘_<l *

== s '_le‘vi'”> '
ldn | ! ><' i{ H
by (2'7),'and. on account o‘f (28)

d?I:l' . : o d vy ’ v ot o )
G =-ax{<'{'1AB,'V'>k: y 8’&'{({ LAY > < ]Bm/>} :
R ’ N r{//

.
” d 224 ” 3 r\
= Z { <'V’IAI'/ > + < d/\,” >}<'( ;bv'v
. (’"‘ . 4”\ ';mn,\ " d
4y <] 1>{d,\ />r<'1rb’d~~v>}
‘,H [ (40)
It follows from (59), (48), (41).(44), (40) tbat,

21'1,['0,\'= ;1'5 ‘,,

dn’ _
R'M = (_(1}\, ) ___0 = <'i/"OII]11'Y,,O> = 0,
in agrecment with (88), (3{}),.’ and

prno 4 (S8

]
R
™1

i

v AlYT0> + <v' 0] Ay, 1> ‘i<'v",0131'/ 0>

v
1 ’

2 PN Ar”0> !’ . - r\'OB( 1
43 ¥ <v0l4ly {</ 2| Bl 0> +<v"01 Bl 1>
" (46)

Formula (46) corresponds to the general formula obtained by Weisskopf for tba
self energy of the electron,

1t remains for us to prove directly the eqmvalence oi (90} and (46) Froxh
{(35) and (86) we have
H'izy =

<0 By, 1>
and also

H’!n <r{"] { Ill I 'Y’) O >
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Henice

L3 A ]
E?i*y = <y 0iH v 1> 1 < v U H v 0 =

b

1
= g E < .,Uf..."”",/ Do DBy s

o
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’
[

1 ‘
3 5 < A0 > < 0 Bly ) > (47)
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Now it follows from (£6) that
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L, < "OVH 0
4 Z s S V1B jan0> <) = 0, (4F)
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'
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¥
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whence

L vt

S Y <oA= <a " 1Bl 0>

24

a3

1 7 .
+ g Y <V OLAN IS <y 0 Blv 0> - 0. (49)

et
¥

{47) and (49) give at once (46), and so the equivalence of the twb methods is

proved.
The formula for the transverse energy of the electron can be obiained from
our above result by writing ¢ for A, - % i lor 4, A for B, and carrying

out all the summations and integrations. The detailed calculations will not be

given here.



