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本文从高阶非完整系统嵌入变分恒等式的积分变分原理出发,根据三种不等价条件变分的选取,得到了高阶

非完整系统的三类不等价动力学模型,即高阶非完整约束系统的 vakonomic方程、Lagrange-d’Alembert方程和一

种新的动力学方程. 当高阶非完整约束方程退化为一阶非完整约束时, 利用此理论可以得到一般非完整系统的

vakonomic模型、Chetaev模型和一种新的动力学模型. 最后借助于应用实例验证了结论的正确性.
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1 引 言

分析力学在物理学、力学乃至工程技术领域

具有极其广泛的应用. 尤其是在处理具有约束问题
时, 分析力学发挥着最有效的作用. 然而应用经典
的分析力学方法处理具有非完整约束的动力学问

题时却遇到了许多困难和争议 [1−6]. 一般非完整系
统由于受到一阶的不可积微分约束,这类动力学系
统不能约化为低维空间上的完整系统,导致利用拉
格朗日 -达朗伯原理和嵌入约束的哈密顿原理会得
到两种不等价的动力学模型,即非完整力学模型和
vakonomic模型, 这曾经引起国内外学者的激烈争
议 [7−10]. 非完整系统到底依据什么基本原理,采用
何种研究方法最为有效都是非完整力学所关注的

基本问题.文献 [11]从一种原理, 即利用嵌入变分
恒等式的积分变分原理,只是根据三种不等价的条
件变分的选取,得到了非完整系统的三种不等价动
力学模型,即 Chetaev模型 (也称非完整力学模型)、
vakonomic 模型 (也称变分非完整模型) 和一种新
的动力学模型.

随着现代科学技术, 如自动控制、自动调节

理论的发展, 对非完整系统的研究已经从一阶约

束系统扩展到二阶及二阶以上的高阶非完整系

统 [12−16]. 同时, 由于力学理论自身学科发展的需

要,也激发了人们对于高阶非完整系统的研究兴趣,

如关于高阶非完整系统的运动微分方程、高阶非

完整系统的对称性与守恒量等 [17−20]. 然而,通常研

究高阶非完整系统的分析力学方法,与研究一阶非

完整系统的通常分析力学方法类似,即分别从高阶

拉格朗日 -达朗伯原理和高阶哈密顿原理出发,选

择不同嵌入约束的方式和不同的变分运算,得到高

阶非完整系统的动力学方程 [19]. 这种从不同的变

分原理和不同的拉格朗日乘子法出发,得到不同动

力学方程的方法, 虽然动力学方程无误, 但其理论

的协调性显得不足. 因此, 高阶非完整系统的动力

学建模能否依据一个统一形式的变分原理,并采用

一种嵌入约束的方式,将动力学模型的不同归结为

最简单明了的因素, 尽可能保持理论的协调性, 成

为研究高阶非完整约束系统的基本问题之一.本文

将从一种基本原理出发,即从高阶非完整约束系统
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嵌入变分恒等式的积分变分原理,并根据高阶非完
整约束系统的不等价条件变分的选取,直接得到高
阶非完整系统的不等价动力学模型.
本文中 i, j = 1,2, · · · ,n; α,β = 1,2, · · · ,g; µ ,ν =

g+1,g+2, · · · ,n; m = 1,2, · · · ,k.

2 一般非完整约束系统的不等价动力
学模型

一般非完整系统受到的非完整约束方程为

f α(t,qi, q̇i) = 0, α = 1, · · · ,g; i = 1, · · · ,n. (1)

一阶非完整约束方程的变分恒等式为

∂ f α

∂ q̇i

[
δ q̇i − d

dt
(δqi)

]
+

d
dt

(
∂ f α

∂ q̇i δqi
)

−δ f α(t,qi, q̇i)+

[
∂ f α

∂qi − d
dt

∂ f α

∂ q̇i

]
δqi = 0. (2)

由于约束的非完整性, 导致以下条件不等同时
成立 [1,11]:

δ q̇i − d
dt
(δqi) = 0, (3a)

∂ f α

∂ q̇i δqi = 0, (3b)

δ f α(t,qi, q̇i) = 0. (3c)

一般非完整系统嵌入变分恒等式恒等式的积分变

分原理为∫ t2

t1

{
δL(t,qi, q̇i)+λα

{
∂ f α

∂ q̇i

[
δ q̇i − d

dt
(δqi)

]
+

d
dt

(
∂ f α

∂ q̇i δqi
)
−δ f α(t,qi, q̇i)

+

[
∂ f α

∂qi − d
dt

∂ f α

∂ q̇i

]
δqi

}}
dt = 0. (4)

如果选取 vakonomic条件变分 δv:

δvq̇i − d
dt
(δvqi) = 0,

δv f α(t,qi, q̇i) = 0, (5a)

d
dt

(
∂ f α

∂ q̇i δvqi
)
+

[
∂ f α

∂qi − d
dt

∂ f α

∂ q̇i

]
δvqi = 0. (5b)

和嵌入变分恒等式的积分变分原理 (4)就可以得到
一般非完整系统的 vakonomic模型

[L]i +λα

(
∂ f α

∂qi − d
dt

∂ f α

∂ q̇i

)
− λ̇α

∂ f α

∂ q̇i = 0, (6)

其中 [L]i =
∂L
∂qi −

d
dt

∂L
∂ q̇i .

如果选取 Hölder条件变分 δH:

δHq̇i − d
dt
(δHqi) = 0,

∂ f α

∂ q̇i δHqi = 0, (7a)

δH f α −
[

∂ f α

∂qi − d
dt

∂ f α

∂ q̇i

]
δHqi = 0. (7b)

和嵌入变分恒等式的积分变分原理 (4)就可以得到
一般非完整系统的 Lagrange-d’Alembert方程为

[L]i −Λα
∂ f α

∂ q̇i = 0, (8)

其中 Λα = λ̇α .
如果选取 Suslov条件变分 δS:

∂ f α

∂ q̇i δSqi = 0,

δS f α(t,qi, q̇i) = 0, (9a)

∂ f α

∂ q̇i

[
δSq̇k − d

dt
(δSqi)

]
+

[
∂ f α

∂qi − d
dt

∂ f α

∂ q̇i

]
δSqi = 0. (9b)

和嵌入变分恒等式的积分变分原理 (4)就可以得到
一般非完整系统的一种新动力学模型

[L]i −
∂L

∂ q̇α

(
∂ f α

∂qi − d
dt

∂ f α

∂ q̇i

)
= 0. (10)

3 高阶非完整约束系统的不等价动力
学模型

如果动力学系统受到高阶的不可积微分

约束为

f α(t,qi, q̇i, · · · ,
(k)

qi ) = 0,

k = 1, · · · ,m;α = 1, · · ·g; i = 1, · · · ,n, (11)

就称这种动力学系统为高阶非完整系统.则高阶非
完整约束方程的变分恒等式为

m

∑
k=1

∂ f α

∂
(k)
qi

[
δ
(k)

qi − dk

dtk (δqi)

]
+

m

∑
k=1

dk

dtk

(
∂ f α

∂
(k)
qi

δqi
)

−δ f α
(

t,qi, q̇i, · · · ,
(k)

qi
)

+

[
∂ f α

∂qi −
m

∑
k=1

dk

dtk
∂ f α

∂
(k)
qi

]
δqi = 0. (12)

显然,当 m = 1时,高阶非完整约束方程的变分
恒等式 (12)时就退化为一般非完整系统的变分恒
等式 (2).
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由于高阶微分约束方程 (11)的不可积性,以下
条件:

δ
(k)

qi − dk

dtk (δqi) = 0, (13a)

∂ f α

∂
(k)
qi

δqi = 0, (13b)

δ f α
(

t,qi, q̇i, · · · ,
(k)

qi
)
= 0, (13c)

不能同时成立.

把高阶非完整约束的变分恒等式嵌入哈密顿

积分变分原理,就可以得到高阶非完整系统的积分
变分原理:∫ t2

t1

{
δL(t,qi, q̇i)+λα

{ m

∑
k=1

∂ f α

∂
(k)
qi

[
δ
(k)

qi

− dk

dtk (δqi)

]
+

m

∑
k=1

dk

dtk

(
∂ f α

∂
(k)
qi

δqi
)

−δ f α +

[
∂ f α

∂qi −
m

∑
k=1

dk

dtk
∂ f α

∂
(k)
qi

]
δqi

}}
dt = 0. (14)

显然,当 m = 1时,高阶非完整约束系统嵌入变
分恒等式的积分变原理 (14)就退化为一般非完整
系统嵌入变变分恒等式的积分变分原理 (4). 高阶
非完整系统的三种不等价条件变分为如下形式:

vakonomic条件变分 δv:

δv

(k)

qi − dk

dtk (δvqi) = 0,

δv f α
(

t,qi, q̇i, · · · ,
(k)

qi
)
= 0, (15a)

m

∑
k=1

dk

dtk

(
∂ f α

∂
(k)
qi

δvqi
)

+

[
∂ f α

∂qi −
m

∑
k=1

dk

dtk
∂ f α

∂
(k)
qi

]
δvqi = 0. (15b)

Hölder条件变分 δH:

δH

(k)

qi − dk

dtk (δHqi) = 0,

∂ f α

∂
(k)
qi

δHqi = 0, (16a)

δH f α −
[

∂ f α

∂qi −
m

∑
k=1

dk

dtk
∂ f α

∂
(k)
qi

]
δHqi = 0. (16b)

Suslov条件变分 δS:

∂ f α

∂
(k)
qi

δSqi = 0,

δS f α
(

t,qi, q̇i, · · · ,
(k)

qi
)
= 0, (17a)

m

∑
k=1

∂ f α

∂
(k)
qi

[
δS

(k)

qi − dk

dtk (δSqi)

]

+

[
∂ f α

∂qi −
m

∑
k=1

dk

dtk
∂ f α

∂
(k)
qi

]
δSqi = 0. (17b)

利用高阶非完整系统嵌入变分恒等式的积分

变分原理 (14),并分别选取高阶非完整系统的三种
不等价条件变分,就可以得到高阶非完整系统的不
等价动力学模型.
如果采用 vakonomic条件变分 δv(15)式,高阶

非完整系统嵌入变分恒等式的积分变分原理 (14)
式就变为∫ t2

t1

{
δvL(t,qi, q̇i)+λα

{ m

∑
k=1

dk

dtk

(
∂ f α

∂
(k)
qi

δvqi
)

+

(
∂ f α

∂qi −
m

∑
k=1

dk

dtk
∂ f α

∂
(k)
qi

)
δvqi

}}
dt = 0. (18)

利用交换关系 (15) 和端点变分为零条件, 即
δqi|t1,2 = 0,由分部积分知∫ t2

t1

∂L
∂ q̇i δvq̇i =−

∫ t2

t1

d
dt

∂L
∂ q̇i δvqi, (19)∫ t2

t1
λα

∂ f α

∂
(k)
qi

δ
(k)
q dt =−

∫ t2

t1

d
dt

(
λα

∂ f α

∂
(k)
qi

)
δv

(k−1)
q dt

= · · ·= (−1)k
∫ t2

t1

dk

dtk

(
λα

∂ f α

∂
(k)
qi

)
δvqi dt. (20)

把 (19)和 (20)式代入 (18)式得∫ t2

t1

{
[L]i +

m

∑
k=0

(−1)k dk

dtk

(
λα

∂ f α

∂
(k)
qi

)}
δvqi dt

=0, (21)

其中 [L]i =
∂L
∂qi −

d
dt

∂L
∂ q̇i . 由变分 δvqi 的任意性,可

得高阶非完整约束系统的 vakonomic方程为

[L]i +
m

∑
k=0

(−1)k dk

dtk

(
λα

∂ f α

∂
(k)
qi

)
= 0. (22)

此结果与文献 [19]中得到的 vakonomic方程一致.
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特别地,当 m = 1时, k = 0,1,可以得到一般非

完整系统的 vakonomic方程 (6).

如果采用 Hölder 条件变分 δH(16), 高阶非完

整系统嵌入变分恒等式的积分变分原理 (14) 式

就变为∫ t2

t1

{
δHL(t,qi, q̇i)+λα

{
−δH f α +

(
∂ f α

∂qi

−
m

∑
k=1

dk

dtk
∂ f α

∂
(k)
qi

)
δHqi

}}
dt = 0. (23)

利用 (19)和 (20)式,就可以得到∫ t2

t1

{
[L]iδHqi +

m

∑
k=1

(−1)k+1 dk

dtk

(
λα

∂ f α

∂
(k)
qi

)
δHqi

−λα
m

∑
k=1

dk

dtk
∂ f α

∂
(k)
qi

δHqi
}

dt = 0. (24)

进一步运算可以到∫ t2

t1

{
[L]i +

m

∑
k=1

(−1)k+1 dk

dtk (λα)
∂ f α

∂
(k)
qi

+λα
m

∑
k=1

(
(−1)k+1 −1

) dk

dtk
∂ f α

∂
(k)
qi

}
δHqi dt = 0. (25)

由变分 δHqi的任意性,可得高阶非完整约束系统的

Lagrange-d’Alembert型方程为

[L]i +
m

∑
k=1

(−1)k+1 dk

dtk (λα)
∂ f α

∂
(k)
qi

+λα
m

∑
k=1

(
(−1)k+1 −1

) dk

dtk
∂ f α

∂
(k)
qi

= 0. (26)

特别地, 当 m = 1 时, 可以得到一般非完整系统的

Lagrange-d’Alembert型方程 (8).

如果采用 Suslov 条件变分 δS(17), 高阶非完

整系统嵌入变分恒等式的积分变分原理 (14) 式

就变为∫ t2

t1

{
δSL(t,qi, q̇i)+λα

{ m

∑
k=1

∂ f α

∂
(k)
qi

[
δS

(k)

qi − dk

dtk (δSqi)

]

+

(
∂ f α

∂qi −
m

∑
k=1

dk

dtk
∂ f α

∂
(k)
qi

)
δSqi

}}
dt = 0. (27)

利用 (17b)式可得

δSq̇α − d
dt
(δSqα)

=

(
∂ f β

∂ q̇α

)−1{
− [ f α ]i +

m

∑
k=2

(−1)k+1 dk

dtk
∂ f α

∂
(k)
qi

}
δSqi.

(28)

由 (27)和 (28)式可得

[L]i +
∂L
∂ q̇β

(
∂ f β

∂ q̇α

)−1{
− [ f α ]i

+
m

∑
k=2

(−1)k+1 dk

dtk
∂ f α

∂
(k)
qi

}
= 0. (29)

特别地,当 m = 1时, f α = q̇α −φα(t,qi, q̇µ),则
方程 (29)退化为一般非完整约束系统的新的动力
学方程 (10).

4 应用举例

算例1 设单位质量质点的 Lagrange 函数为
L = 1/2

[
(q̇1)2 +(q̇2)2 +(q̇3)2

]
, 受到的二阶非完整

约束方程为

f = q̇1q̈1 + q̇2q̈2 + q̇3q̈3 = 0. (30)

利用 vakonomic条件变分和 (22)式,可以得到
高阶非完整约束系统的 vakonomic方程为

q̈1 − λ̇ q̈1 − λ̈ q̇1 = 0, (31a)

q̈2 − λ̇ q̈2 − λ̈ q̇2 = 0, (31b)

q̈3 − λ̇ q̈3 − λ̈ q̇3 = 0. (31c)

结合方程 (30), 就可以求得到此高阶非完整约束
系统的运动轨迹. 此结果与文献 [19] 得到的结
果一致.
利用 Hölder条件变分和 (26)式,可以得到高阶

非完整约束系统的 Lagrange-d’Alembert型方程为

q̈1 + λ̇ q̈1 − λ̈ q̇1 +2λq1 = 0, (32a)

q̈2 + λ̇ q̈2 − λ̈ q̇2 +2λq2 = 0, (32b)

q̈3 + λ̇ q̈3 − λ̈ q̇3 +2λq3 = 0. (32c)

结合约束方程 (30)式,就可以得到此高阶非完整约
束系统的运动轨迹.
利用 Suslov条件变分和 (29)式,可以得到高阶

非完整约束系统的一类新方程为

q̈1 +
(
q̇1q̈1 + q̇2q̈2)−1[q̇3q̈1q̈3 −2q̇1(q̈3)2

+ q̇1q̇3q3]= 0, (33a)

q̈2 +
(
q̇1q̈1 + q̇2q̈2)−1[q̇3q̈2q̈3 −2q̇2(q̈3)2

+ q̇2q̇3q3]= 0, (33b)
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q̈3 +(q̇1q̈1 + q̇2q̈2)−1[2q̈3(q̇1q̈1 + q̇2q̈2)

− q̇3(q̈1)2 − q̇1q̇3q1 − q̇3(q̈2)2 − q̇2q̇3q2]
=0 (33c)

算例2 对于受到一阶非线性非完整约束系统

的 Appell-Hamelz例子,系统的 Lagrange函数为

L =
1
2

m(ẋ2 + ẏ2 + ż2)−mgz. (34)

受到的非线性非完整约束方程为

ż =
b
a

√
ẋ2 + ẏ2. (35)

当高阶非完整约束系统的 vakonomic 方程,
Lagrange-d’Alembert 型方程和一种新的动力学方
程退化为一阶非完整约束时的情况,可以得到

Appell-Hamel系统的 vakononmic方程(
1+

b2

a2

)
ẍ+

bg
a

ẋ√
ẋ2 + ẏ2

+

(
m

b
a

√
ẋ2 + ẏ2 +λz

)
ẏ(ẍẏ− ẋÿ)
(ẋ2 + ẏ)2/3 = 0, (36a)(

1+
b2

a2

)
ÿ+

bg
a

ẏ√
ẋ2 + ẏ2

+

(
m

b
a

√
ẋ2 + ẏ2 +λz

)
ẋ(ẋÿ− ẍẏ)
(ẋ2 + ẏ2)2/3 = 0, (36b)

mg+mz̈+ λ̇z = 0. (36c)

Appell-Hamel系统的Lagrange-d’Alembert方程(
1+

b2

a2

)
ẍ+

bg
a

ẋ√
ẋ2 + ẏ2

+m
b
a

ẏ(ẍẏ− ẋÿ)
ẋ2 + ẏ2

=0 (37a)(
1+

b2

a2

)
ÿ+

bg
a

ẏ√
ẋ2 + ẏ2

+m
b
a

ẋ(ẋÿ− ẍẏ)
ẋ2 + ẏ2

=0. (37b)

Appell-Hamel系统的一种新方程(
1+

b2

a2

)
ẍ+

bg
a

ẋ√
ẋ2 + ẏ2

= 0, (38a)(
1+

b2

a2

)
ÿ+

bg
a

ẏ√
ẋ2 + ẏ2

= 0. (38b)

在系统的运动轨道上, 当 ẍẏ− ẋÿ = 0 时, 这三

种动力学模型等价.
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Abstract
In this article, from the integral variational principles for embedded variation identity of high-order nonholonomic constrained

systems, three kinds of dynamics for high-order nonholonomic constrained systems are obtained, including the vakonomic dynamical
model, Lagrange-d’Alembert model and a new one if utilizing respectively three kinds of conditional variation to them. And the
integral variational principles for embedded variation identity of high-order nonholonomic constrained systems is also fitted for the
general nonholonomic systems when the constrained equation is reduced to a first-order one. Then, the vakonomic dynamic, Chetaev
dynamics and a new model of general nonholonomic systems can also be obtained. Finally, two illustrated examples are used to verify
the validity of the theory.
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