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差错基、量子码与群代数*
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本文找到了一种研究优质差错基和量子纠错码的新方法,即群代数方法,它为差错基和量子码提供了一种代数

表示. 利用这种代数表示,建立了一系列关于最一般量子纠错码的线性规划限.
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1 引 言

搭建一台能够抵抗消相干和量子噪声的实用

量子计算机的需求已经极大的刺激了对于量子纠

错码研究的兴趣 [1−9]. 虽然任意差错算子都会影响

量子态,但我们总是可以用一组差错算子基来表示

它们.在文献 [10]中, 引入了一类特别有用的么正

差错基, 称为优质差错基. 优质差错基可以说是量

子纠错码理论的基石 [11].

在本文中,我们提出一种研究差错基和量子码

的新方法. 我们利用一种代数方法来研究优质差错

基,即群代数. 他给出了关于优质差错基和量子纠

错码的代数表示. 这种群代数表示的优点在于使用

他能够精确的陈述出关于量子纠错码的各种性质.

首先, 我们将回忆一下优质差错基的性质. 然后给

出与阿贝尔差错基相关联的群代数及其特征的定

义.最后,作为应用,我们从群代数的重量枚举子得

到一系列关于最一般量子纠错码的线性规划限.除

了包含现有的线性规划限 [12−14] 之外,这些限还给

出了更强的结果.

2 预备知识

令H = Cn 是一个 n维希尔波特空间,并令 G

是一个单位元为 0 的 n2 阶加群. H 的一组优质

差错基是H 上的一个么正算子集 ε = {Eg|g ∈ G},
满足

1) E0 是恒等算子;
2)对于所有的 g ∈ G, trEg = nδg,0;
3) 对于所有的 g,h ∈ G, EgEh = ωghEg+h, 其中

ωgh 是模为 1的复数. 我们称
G为差错基 ε 的索引群.
引理 1 如果索引群 G是阿贝尔的,那么对于

任意非零 h ∈ G有

∑
g∈G

ωghω̄hg = 0.

证明 由优质差错基的性质 3),我们有

EaEbEh = (ωbhω̄hb)EaEhEb

= (ωahω̄ha)(ωbhω̄hb)EhEaEb

和

EaEbEh = ωabEa+bEh

= ωab(ω(a+b)hω̄h(a+b))EhEa+b

= (ω(a+b)hω̄h(a+b))EhEaEb,

这意味着

(ωahω̄ha)(ωbhω̄hb) = ω(a+b)hω̄h(a+b). (1)

现在令 Gh = {ωghω̄hg|g ∈ G}. 那么由 (1)式可知 Gh

是循环群的子群,这是因为所有 ωgh 生成一个循环

*国家自然科学基金 (批准号: 61201138, 60902030)、国家重点基础研究发展计划 (973) 项目 (批准号: 2010CB328300) 和 111 工程 (批准号:
B08038)资助的课题.

† 通讯作者. E-mail: lizhuo@xidian.edu.cn

c⃝ 2013 中中中国国国物物物理理理学学学会会会 Chinese Physical Society http://wulixb.iphy.ac.cn

130306-1



物理学报 Acta Phys. Sin. Vol. 62, No. 13 (2013) 130306

群 [15]. 因此, 对于任意非零 h ∈ G, Gh 本身是一个

非平凡的循环群. 证毕.

在下面的叙述中, 如无特殊声明, 我们将总是

假设优质差错基 ε 的索引群 G是阿贝尔的. 这个假

设是合理的,因为对于任意维数 n,这样的优质差错

基都是存在的 [10].

3 群代数

我们将用关于 z1, · · · ,zl 的形式多项式来描述 l

长的差错算子张量积.一般来说, Eg = Eg1 ⊗·· ·⊗Egl

将表示为 zg1
1 zg2

2 · · ·zgl
l , 简记为 zg. 如果我们规定

zgi
i zhi

i = zgi+hi
i ,那么全部 zg就构成一个乘群,记为 Z.

因此 Gl 和 Z是同构的群, Gl 中的加法

g+h = (g1, · · · ,gl)+(h1, · · · ,hl)

= (g1 +h1, · · · ,gl +hl),

对应于 Z中的乘法

zgzh = zg1
1 · · ·zgl

l · zh1
1 · · ·zhl

l = zg1+h1
1 · · ·zgl+hl

l = zg+h.

定义 2 复数域 C上 Z的群代数 CZ包含所有

的形式和

∑
g∈Gl

agzg, ag ∈ C, zg ∈ Z.

CZ元素间的加法和乘法定义为

∑
g∈Gl

agzg + ∑
g∈Gl

bgzg = ∑
g∈Gl

(ag +bg)zg,

r ∑
g∈Gl

agzg = ∑
g∈Gl

ragzg, r ∈ C,

∑
g∈Gl

agzg · ∑
h∈Gl

bhzh = ∑
g,h∈Gl

agbhzg+h.

对于每一个 h ∈ Gl ,我们关联一个从 Z 到复数

域的映射 χh,满足

χh(zg) = trE†
h E†

g EhEg/nl ,

χh叫做 Z的特征. χh的作用可以线性扩展到CZ上:

χh( ∑
g∈Gl

agzg) = ∑
g∈Gl

agχh(zg)

= ∑
g∈Gl

agtrE†
h E†

g EhEg/nl .

另外,我们注意到有如下的关系成立:

χh(zg) =
l

∏
i=1

ωhigiω̄gihi . (2)

令

C = ∑
g∈Gl

cgzg

是群代数 CZ 的任意元素,满足

M = ∑
g∈Gl

cg ̸= 0.

定义 3 C的变换定义为如下的 CZ的元素C′:

C′ =
1
M ∑

h∈Gl

χh(C)zh,

其中特征 χ 的定义如上.

假设

C′ = ∑
h∈Gl

c′hzh,

则有

c′h =
1
M

χh(C)

=
1
M ∑

g∈Gl

cgtrE†
h E†

g EhEg/nl , h ∈ Gl . (3)

现在,让我们来描述群代数 CZ 的几类重量枚

举子. 下面, 我们将用 α0 = 0,α1, · · · ,αn2−1 来表示

G的元素.

首先考虑的重量枚举子通过引入足够多的变

量可以完全指定群代数. 一般地,我们用变量 zi j 来

表示向量 g的第 i个位置上是 G的第 j个元素 α j.

向量 g = (αa1 ,αa2 , · · · ,αal )由如下的多项式来描述:

f (g) = z1a1z2a2 · · ·zlal .

因此 f (g)可以唯一地确定 g. 这总共需要使用 ln2

个变量 zi j, 1 6 i 6 l,0 6 j 6 n2 −1.

现在我们可以定义 C 的确切枚举子为如下的

形式:

EC = ∑
g∈Gl

cg f (g).

则变换 C′的确切枚举子为

EC′ = ∑
h∈Gl

c′h f (h).

定理 4

EC′(z10, · · · ,zir, · · · ,zl(n2−1))

=
1
M
EC

( n2−1

∑
s=0

ωαsα0ω̄α0αsz1s, · · · ,

n2−1

∑
s=0

ωαsαr ω̄αrαszis, · · · ,
n2−1

∑
s=0

ωαsαn2−1
ω̄αn2−1αszls

)
.
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证明 由 (2)式和 (3)式可知,上式的左边等于

∑
h∈Gl

c′h f (h)

=
1
M ∑

g∈Gl

cg ∑
h∈Gl

χh(zg) f (h)

=
1
M ∑

g∈Gl

cg

n2−1

∑
s1=0

n2−1

∑
s2=0

· · ·
n2−1

∑
sl=0

l

∏
i=1

ωαsi giω̄giαsi
zisi

=
1
M ∑

g∈Gl

cg

l

∏
i=1

n2−1

∑
s=0

ωαsgiω̄giαszis

等于右边. 证毕.

下面考虑的枚举子将按照每一个群元素 αi 在

g中出现的次数来分类 Gl 中的向量 g.

定义 5 向量 g = (g1, · · · ,gl) 的成分, 表示为

comp(g),定义为 (s0,s1, · · · ,sn2−1),其中 si = si(g)是

等于 αi 的分量 g j 的个数. 显然

n2−1

∑
i=0

si = l.

我们把集合 {A(t)}叫做C的完全重量分布,其

中 A(t)是满足 comp(g) = t = (t0, · · · , tn2−1)的 cg 的

和.这样我们就可以定义C的完全重量枚举子为

WC(z0, · · · ,zn2−1) = ∑
t

A(t)zt0
0 · · ·z

tn2−1
n2−1

= ∑
g∈Gl

cgzs0
0 · · ·z

sn2−1
n2−1 .

同时, C′ 的完全重量分布为 {A′(t)}, A′(t) 是满足

comp(h) = t = (t0, · · · , tn2−1) 的 c′h 的和, 并且 C′ 的

完全重量枚举子为

WC′(z0, · · · ,zn2−1) = ∑
t

A′(t)zt0
0 · · ·z

tn2−1
n2−1.

定理 6

WC′(z0, · · · ,zr, · · · ,zn2−1)

=
1
M

WC

(n2−1

∑
s=0

ωαsα0ω̄α0αszs, · · · ,

n2−1

∑
s=0

ωαsαr ω̄αrαszs, · · · ,
n2−1

∑
s=0

ωαsαn2−1
ω̄αn2−1αszs

)
.

证明 在定理 4中令 zi j = z j, 1 6 i 6 l,0 6 j 6
n2 −1即得.

通过令完全重量枚举子中的某些变量相等,我

们可以得到李重量枚举子和汉明重量枚举子. 他们

给出越来越少关于群代数的信息,但同时也变得越

来越容易处理.

定义 7 假设 n2 = 2δ + 1 是奇数, 并令 G

的元素为 α0 = 0,α1, · · · ,αδ ,αδ+1, · · · ,αn2−1, 使得

αn2−i =−αi, 1 6 i 6 δ . 则向量 g ∈ Gl 的李成分,表

示为 Lee(g), 定义为 (l0, l1, · · · , lδ ), 其中 l0 = s0(g),

li = si(g)+ sn2−i(g), 1 6 i 6 δ .

我们把集合 {L(t)}叫做 C的李重量分布,其中

L(t)是满足 Lee(g) = t = (t0, · · · , tδ )的 cg的和.这样

我们就可以定义C的李重量枚举子为

LC(z0, · · · ,zδ ) = ∑
t

L(t)zt0
0 zt1

1 · · ·ztδ
δ

= ∑
g∈Gl

cgzl0
0 zl1

1 · · ·zlδ
δ .

同时, C′ 的李重量分布为 {L′(t)}, L′(t) 是满足

Lee(h) = t = (t0, · · · , tδ )的 c′h 的和,并且 C′ 的李重

量枚举子为

LC′(z0, · · · ,zδ ) = ∑
t

L′(t)zt0
0 zt1

1 · · ·ztδ
δ .

定理 8 变换 C′ 的李枚举子可以通过将 C 的

李枚举子中的变量 zi 替换为

z0 +
δ

∑
s=1

(ωαsαiω̄αiαs + ω̄αsαiωαiαs)zs,

然后再除以 M而得到.

证明 在定理 6中令 zn2−i = zi, 1 6 i 6 δ 即得.

向量 g = (g1, · · · ,gl) ∈ Gl 的汉明重量定义为非

零分量 gi 的个数,表示为 wt(g).

我们把集合 {Ai} 叫做 C 的汉明重量分布, 其

中 Ai 是满足 wt(g) = i的 cg 的和.这样我们就可以

定义C的汉明重量枚举子为

WC(x,y) =
l

∑
i=0

Aixl−iyi = ∑
g∈Gl

cgxl−wt(g)ywt(g).

同时, C′的汉明重量分布为 {A′
i}, A′

i是满足 wt(h) =

i的 c′h 的和,并且C′的汉明重量枚举子为

WC′(x,y) =
l

∑
i=0

A′
ix

l−iyi.

定理 9

WC′(x,y) =
1
M

WC(x+(n2 −1)y,x− y).

证明 在定理 6 中令 z0 = x, z1 = z2 = · · · =
zn2−1 = y,再利用引理 1即得.

4 量子码中的应用

上面得到的关于群代数重量枚举子的结果可
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以应用于量子纠错码来建立参数限.下面我们就来
看看这方面的应用.
给定一个量子码 ((l,K,d))n, {vi} 是他的一组

规范正交基, 令 P 是向码空间的正交投影. 则
我们有

P = ∑
g∈Gl

trE†
gP

nl Eg =
K

∑
i=1

|vi⟩⟨vi|.

现在我们可以从群代数 CZ 中选出一个元素

P = ∑g∈Gl pgzg,满足

pg =
n2l

K2
trEgP†

nl

trE†
gP

nl

=
1

K2

∣∣∣∣ K

∑
i=1

⟨vi|Eg|vi⟩
∣∣∣∣2. (4)

然后由 (3)式可得, P的变换为 P′ =∑h∈Gl p′hzh,其中

p′h =
K
nl ∑

g∈Gl

n2l

K2
trEgP†

nl

×
trE†

gP

nl trE†
h E†

g EhEg/nl

=
1
K

trE†
hP†EhP

=
1
K

K

∑
i=1

K

∑
j=1

|⟨vi|Eh|v j⟩|2. (5)

定理 10-1 如果参数为 ((l,K,d))n的量子码存

在,那么下面的线性方程组有解:

p0 = 1,
K
nl ∑

g∈Gl

χh(zg)pg = ph, 0 6 wt(h)< d,

K
nl ∑

g∈Gl

χh(zg)pg > ph, d 6 wt(h)6 l,

pg > 0, g ∈ Gl .

证明 由 (4) 式, (5) 式和量子码的性质立即
可得.
令 {A(t)} 和 {A′(t)} 分别为 P 和 P′ 的完全重

量分布,其中 t = (t0, · · · , tn2−1). 则由定理 6

∑
t

A′(t)
n2−1

∏
i=0

zti
i

=
K
nl ∑

r
A(r)

n2−1

∏
j=0

(n2−1

∑
s=0

ωαsα j ω̄α jαszs

)r j

. (6)

如果我们表示

n2−1

∏
j=0

(n2−1

∑
s=0

ωαsα j ω̄α jαszs

)r j

= ∑
t

atr

n2−1

∏
i=0

zti
i ,

则由 (6)式

A′(t) =
K
nl ∑

r
atrA(r).

定理 10-2 如果参数为 ((l,K,d))n的量子码存

在,那么下面的线性方程组有解:

A(l,0, · · · ,0) = 1,
K
nl ∑

r
atrA(r) = A(t), 0 6 l − t0 < d,

K
nl ∑

r
atrA(r)> A(t), d 6 l − t0 6 l,

A(t)> 0.

证明方法基本和定理 10-1相同,只是这里需要
用到完全重量分布的定义.
在 n2 = 2δ + 1 是奇数的情况下, 令 {L(t)}

和 {L′(t)} 分别为 P 和 P′ 的李重量分布, 其中
t = (t0, · · · , tδ ). 则由定理 8

∑
t

L′(t)
δ

∏
i=0

zti
i =

K
nl ∑

r
L(r)

δ

∏
j=0

(
z0 +

δ

∑
s=1

(ωαsα j ω̄α jαs

+ ω̄αsα j ωα jαs)zs

)r j

. (7)

如果我们表示

δ

∏
j=0

(
z0 +

δ

∑
s=1

(ωαsα j ω̄α jαs + ω̄αsα j ωα jαs)zs

)r j

=∑
t

btr

δ

∏
i=0

zti
i ,

则由 (7)式

L′(t) =
K
nl ∑

r
btrL(r).

定理 10-3 如果参数为 ((l,K,d))n的量子码存

在,那么下面的线性方程组有解:

L(l,0, · · · ,0) = 1,
K
nl ∑

r
btrL(r) = L(t), 0 6 l − t0 < d,

K
nl ∑

r
btrL(r)> L(t), d 6 1− t0 6 l,

L(t)> 0.

证明方法基本和定理 10-1相同,只是这里需要
用到李重量分布的定义.
令 {Ai}和 {A′

i}分别为 P和 P′ 的汉明重量分

布.则由定理 9
l

∑
i=0

A′
ix

l−iyi
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=
K
nl

l

∑
r=0

Ar(x+(n2 −1)y)l−r(x− y)r. (8)

如果我们表示

(x+(n2 −1)y)l−r(x− y)r =
l

∑
i=0

hirxl−iyi,

则由 (8)式

A′
i =

K
nl

l

∑
r=0

hirAr.

定理 10-4 如果参数为 ((l,K,d))n的量子码存

在,那么下面的线性方程组有解:

A0 = 1,

K
nl

l

∑
r=0

hirAr = Ai, 0 6 i < d,

K
nl

l

∑
r=0

hirAr > Ai, d 6 i 6 l,

Ai > 0.

证明方法基本和定理 10-1相同,只是这里需要
用到汉明重量分布的定义.
实际上,Calderbank 等人在文献 [12] 中首次证

明了定理 10-4对于二元稳定子码成立,后来 Rains
在文献 [13] 中对其进行了推广. 在文献 [14] 中,
Ketkar等人又证明了定理 10-4同样适用于非二元
稳定子码. 在这里,我们证明了定理 10-4其实是普
适的,即对于任何量子码他都是成立的.
最后我们以一个例子来结束这一节. 在定理

10-4中,如果我们取 (l,K,d,n) = (5,2,3,2),则定理
10-4告诉我们:如果参数为 ((5,2,3))2 的量子码存

在,那么下面的线性方程组有解:
A0 +A1 +A2 +A3 +A4 +A5

16
= A0 = 1,

15A0 +11A1 +7A2 +3A3 −A4 −5A5

16
= A1,

45A0 +21A1 +5A2 −3A3 −3A4 +5A5

8
= A2,

135A0 +27A1 −9A2 −5A3 +7A4 −5A5

8
> A3,

405A0 −27A1 −27A2 +21A3 −11A4 +5A5

16
> A4,

243A0 −81A1 +27A2 −9A3 +3A4 −A5

16
> A5,

Ai > 0.

利用线性规划方法, 我们很容易发现以上线性方

程组有唯一解 A0∼5 = (1,0,0,0,15,0). 因此, 如果

((5,2,3))2 量子码存在的话, 他的重量分布一定是

唯一的. 不存在其他类型的 ((5,2,3))2 量子码.

5 结 论

在上面的四个定理中, 我们看到, 系数 χh(zg),

atr, btr 和 hir 仅仅依赖于差错基的选择.因此,只要

给定一组差错基,我们就可以利用线性规划技术通

过这四个定理来获得量子码的码限. 更进一步, 我

们还注意到这些定理在一定意义上是单调的. 即从

定理 10-4到定理 10-1,他们给出了越来越复杂的线

性规划问题,但同时也变得越来越强; 这是由于变

量的个数从 l 增加到 n2l ,但同时线性约束的个数也

从 l 增加到 n2l .

综上所述,我们已经在差错基和群代数之间搭

起了一座桥梁,他提供了一条研究量子码的新途径.

例如, 在本文中, 我们就利用他建立了最一般量子

码的码限. 我们相信, 群代数方法将成为研究量子

纠错码问题的强有力的工具.
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Abstract
We find a new approach to study nice error bases and quantum error-correcting codes, namely the group algebra which gives us

an algebraic notation for nice error bases and quantum codes. From this algebraic notation we establish a series of linear programming
bounds on the most general quantum error-correcting codes.
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