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基于改进雁群 PSO算法的模糊自适应扩展卡尔曼

滤波的 SLAM算法*
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针对扩展卡尔曼滤波同时定位与地图创建算法中难以建立准确的先验噪声模型的问题,提出一种基于改进雁

群粒子群算法的模糊自适应卡尔曼滤波算法. 利用分数阶微积分改进粒子进化速度,利用混沌来改进粒子的初始化

和发生早熟时的处理. 改进后的雁群粒子群算法在收敛速度与避免早熟方面有了很大改进,并将改进的雁群粒子群

算法用于模糊自适应扩展卡尔曼滤波同时定位与地图创建算法的训练,并与用雁群粒子群算法训练的模糊自适应

扩展卡尔曼滤波同时定位与地图创建算法进行对比,其在定位与构图方面有很大的提高.
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1 引 言

移动机器人的定位与地图创建是机器人领域

的热点研究问题, 并逐渐成为实现机器人自主导

航的关键.同时定位与地图创建 (SLAM)是指处于

未知环境中的移动机器人从一个不确定的起始位

置出发, 在行进过程中利用外部传感器来增量式

地构建环境地图,并同时利用地图对自身的定位进

行更新.
目前 SLAM 的解决方法有很多, 其中 EKF 算

法是最早被用于 SLAM的,其具有很高的数学严谨

性和适合 SLAM问题的算法结构而被广泛使用. 然

而 EKF算法必须要获得系统噪声和观测噪声准确

的先验统计特性, 这在实际中具有很大的难度. 若

这些先验信息不足或不准确,则会造成估计精度降

低,导致滤波发散.文献 [1]采用基于新息协方差的

自适应渐消卡尔曼滤波器,采用渐消因子抑制滤波

器的记忆长度,但现有计算渐消因子的方法公式表

达复杂,计算繁琐,不利于实时的应用. 文献 [2]中

采用模糊规则来自适应调整卡尔曼滤波算法,但模

糊规则隶属度函数的设定是根据经验设定的,应用

到动态系统中还是有一定偏差. 文献 [3]中提出基

于遗传模糊推理的自适应容错滤波算法,利用自适

应遗传算法来对模糊系统的隶属度函数参数进行

优化,利用优化的模糊系统来自适应调制卡尔曼滤

波算法. 但是遗传算法比较复杂, 找出最优后还需

要对问题解码,比较容易陷入早熟.文献 [4]中采用

模糊神经网络的方法来调整扩展卡尔曼滤波应用

在机器人的定位上,即通过自适应神经网络学习的

方法获得模糊系统的隶属度函数的参数. 这就需

要有训练数据,而实际中扩展卡尔曼的理想训练数

据的获得是很困难的. 文献 [5]中采用粒子群算法

(PSO)来训练模糊扩展卡尔曼滤波 SLAM算法,利

用粒子群算法训练不需要训练数据,但是也容易陷
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入早熟.文献 [6]中采用雁群粒子群算法训练模糊

扩展卡尔曼滤波 SLAM算法,雁群粒子群算法在一

定程度上提高了粒子的多样性,但粒子早熟问题依

然存在.

本文在以上研究的基础上针对 EKF中系统噪

声和观测噪声先验特性的不准确、模糊逻辑缺乏

系统化参数设计方法、雁群粒子群算法中粒子早

熟等问题对雁群 PSO算法进行了进一步的改进,并

用改进的 PSO算法来对模糊逻辑关键参数进行优

化, 提高模糊系统调节精度, 进而提高模糊自适应

扩展卡尔曼滤波 SLAM算法的性能.并将改进的雁

群 PSO模糊自适应扩展卡尔曼滤波 SLAM算法与

雁群 PSO模糊自适应扩展卡尔曼滤波 SLAM算法

进行对比.

2 对雁群粒子群算法的改进

粒子群优化算法起源于对鸟群和鱼群群体运

动行为的研究,用于复杂优化问题的求解.Anderson

和 Franks 提出了用雁群飞行特征来改进 PSO 算

法, 雁群粒子群算法 [7] 基本思想是初始化一群随

机粒子, 然后通过迭代找到最优解. 在每次迭代

搜索中, 都将粒子按历史最优适应度值的好坏从

前到后排序, 选出历史最优适应度值最好的粒子

作为第一个粒子, 其他的依次往后排列, 后面每

个粒子都只跟随前面那个较优粒子飞行. 粒子通

过跟踪两个值来更新自己: 第一个是粒子 i 本身

所找到的最优解 pid ; 另一个是按历史适应度值

好坏排在此粒子前面粒子的最优解 p(i−1)d . 粒子

i 在 N 维中位置表示为 xi = (xi1,xi2, · · · ,xiN)
T, 速

度表示为 vi = (vi1,vi2, · · · ,viN)
T, 个体极值表示为

pi = (pi1, pi2, · · · , piN)
T, 雁群粒子群算法的进化方

程可描述为:

vt+1
id =ω · vt

id + c1r1(pt
id − xt

id)

+ c2r2(pt
(i−1)d − xt

id), (1)

xt+1
id =xt

id + vt+1
id , (2)

其中 i = 1,2,3, · · · ,m, d = 1,2, · · · ,D; ω 是非负常数,

称为惯性因子; c1, c2称为学习因子; r1和 r2是介于

[0,1]之间的随机数; t 为当前迭代次数.

雁群 PSO算法在一定程度上保持了粒子多样

性,避免了陷入局部最优问题,但不是特别明显.

2.1 利用分数阶微积分对雁群 PSO 粒子
的进化的速度进行改进

由 Grunwald-Letnikov定义的时域分数阶微分

方程 [8]为

Dα [x(t)]

= lim
h→0

[
1

hα

+∞

∑
k=0

(−1)k(α +1)x(t − kh)
Γ (k+1)Γ (α − k+1)

]
. (3)

从上式可看出, 整数阶导数为有限级数, 但是分数

阶导数却包含无限项数. 分数阶微积分与整数阶微

积分最显著的不同点是分数阶微积分与过去所有

点的信息有关,是一种全局算子.
分数阶导数应用在离散时间时公式近似如下:

Dα [x(t)] =
1

T α

r

∑
k=0

(−1)kΓ (α +1)x(t − kT )
Γ (k+1)Γ (α − k+1)

, (4)

T 表示采样周期, r表示截止的阶数.
由于这种形式定义的分数阶模型具有记忆的

特性,所以非常适合用它来描述不可逆和混沌现象.

从此方面来看,把分数阶的思想加入到描述扰动的

传播及粒子群中粒子长期的动态的进化过程中对

分析问题会有很大的帮助 [9].
用分数阶微积分来改进雁群 PSO的更新速度.

对雁群 PSO的速度更新公式进行重排列得

vt+1
id −ω · vt

id

=c1r1(pt
id − xt

id)+ c2r2(pt
(i−1)d − xt

id). (5)

假设 ω = 1,等式左面是一种离散形式的导数,

阶数 α = 1(假设 T = 1),则上式可变为

Dα [vt+1]

=c1r1(pt
id − xt

id)+ c2r2(pt
(i−1)d − xt

id). (6)

应用分数阶微积分的思想,速度导数的阶数可

以推广到分数 0 6 α 6 1, 引起更平稳的变化和更

长的记忆效应.为了研究改进的 PSO算法中 α 大
小对优化算法性能的影响,使 α 从 0到 1变化,步

长 ∆α = 0.1,来计算一些函数的最优解. 由实验得,

α = 0.6时性能最优. 由于分数阶微积分是无限维,

其 “无限记忆”特性导致了其数字实现的困难.现有

的仿真工具还不能直接处理非整数阶微积分,因此

在使用分数阶微积分时有必要将其用有限维的函

数来近似 [10]. 其中使 r = 4,即只考虑前四项,上式

变为

vt+1 −αvt − 1
2

αvt−1 − 1
6

α(1−α)vt−2
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− 1
24

α(1−α)(2−α)vt−3

=c1r1(pt
id − xt

id)+ c2r2(pt
(i−1)d − xt

id). (7)

即

vt+1 =αvt +
1
2

αvt−1 +
1
6

α(1−α)vt−2

+
1

24
α(1−α)(2−α)vt−3

+ c1r1(pt
id − xt

id)+ c2r2(pt
(i−1)d − xt

id). (8)

经过多次仿真得知 r 值增大对算法性能没有

很大的提高.

2.2 利用混沌对雁群 PSO 的粒子初始化
及早熟问题进行改进

混沌作为一种普遍的非线性现象,它的行为非

常复杂并且类似于随机行为,但在混沌中有其内在

规律性. 由于混沌具有遍历的特性, 变量最优值选

取利用混沌来进行搜索比盲目无序的随机搜索更

具有优越性,可以避免算法陷入局部最优 [11].

判断粒子群发生早熟收敛的依据为:提前设定

好两个阈值 α 和 β ,当平均粒子距离 Dis < α 并且
粒子群的适应度方差 σ2 < β 时, 则可判断粒子群

发生了早熟.其中平均粒子距离表示为粒子群中各

个粒子间的分布离散的程度.假设搜索空间对角最

大长度为 L,解空间的维数为 D,第 i个粒子的第 d

维坐标值表示为 pid , 所有粒子第 d 维坐标值均值

为 pd ,则平均粒子距离为

Dis =
1

popsize ·L
·

popsize

∑
i=1

√
D

∑
d=1

(pid − pd)2. (9)

式中 popsize 为种群规模. 由 (9) 式可知, Dis 值越

大,表示种群越分散;越小,表示种群越集中.

设 fi 表示为粒子 i的适应度值, favg 表示为当

前粒子群的平均适应度值,则粒子群的适应度方差

σ2 为

σ2 =
popsize

∑
i=1

(
fi − favg

f

)2

, (10)

其中 f 为归一化定标因子,它限制 σ2 的大小, f 的
取值采用如下公式:

f =

 max
16i6popsize

| fi − favg|, max | fi − favg|> 1,

1, 其他.
(11)

粒子群中粒子的聚集程度是由群体适应度方差反

映的.σ2 越大,粒子聚集程度越小;反之,则越大.随

着迭代次数的增加, 粒子的适应度会越来越接近,

σ2 会越来越小. 当 σ2 < β 时, 则认为算法步入后

期搜索,易陷入局部最优,出现早熟收敛.

利用混沌来对粒子群进行初始化的过程为:首

先随机产生 D个 [0,1]上的随机数, D为目标函数

中自变量的个数,然后利用 Logistic混沌映射 [12]

pi,d = µ pi−1,d(1− pi−1,d), (12)

其中 i = 2,3 · · ·G (G > popsize)产生 G个混沌序列.

将这些混沌序列从混沌区间 [0,1]映射到变量取值

区间 [a,b]

pi,n = a+(b−a)pi,n. (13)

最后计算出每个序列的适应度值,从中选取 popsize

个适应度高的作为初始粒子.

根据混沌序列遍历性的特性,引入混沌序列的

搜索算法可以在迭代中产生许多局部最优解的邻

近点, 以此来帮助惰性粒子逃离局部最优点, 进而

能够快速搜寻到全局最优点. 因此为了能使粒子跳

出停滞的状态,应选择有活力的新粒子来取代惰性

粒子. 即每当判断出 PSO发生早熟现象时,就利用

混沌搜索对当前粒子群中的某个粒子进行更新,增

加粒子群的多样性 [13].

当粒子陷入局部最优点时操作如下: 1)产生一

个初始混沌变量, 取值在 [0,1] 之间; 利用 Logistic

映射函数产生新的混沌序列,并把混沌变量变换到

优化变量的取值区间. 2) 计算每个序列的适应度,

把搜索到的最好适应度值记录下来,直到达到混沌

搜索的最大迭代次数. 3)把混沌搜索到的最好适应

度与当前整个粒子群的最好适应度进行比较. 如果

前者比后者更优,以混沌搜索到的最好的混沌序列

取代当前粒子群的最优粒子; 否则,把粒子群中其

它任一粒子用此混沌序列取代.

上文采用两种方法来对雁群 PSO算法进行改

进: 1) 是利用分数阶微积分来对粒子更新速度进

行改进, 以此来增加雁群 PSO的全局性和遗传性;

2)是利用混沌思想来对粒子初始化值的选取进行

优化, 保证有限个粒子在解空间均匀分布, 并在判

断粒子发生早熟时对粒子进行更新, 增加粒子群

多样性.
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3 模糊自适应扩展卡尔曼滤波 SLAM
算法

3.1 模糊自适应扩展卡尔曼滤波 SLAM算
法基本思想

基于 EKF 的 SLAM 算法 [6] 主要包括两个过

程: 预测过程和观测更新过程. 首先建立系统模型,

利用包含 k时刻机器人位姿 xv(k)和地图特征 xm(k)

的联合状态向量表示空间环境,即

x(k) = [xv(k),xm(k)]T. (14)

相应的状态协方差矩阵为

P =

 Pv Pvm

PT
vm Pm

 , (15)

其中 Pvm 表示机器人状态向量与地图特征点向量

的关联程度.

预测过程: 定义任意 k时刻控制信号为 u(k)和

传感器观测值为 z(k). Q(k) 和 R(k) 分别为它们对

应的协方差矩阵. 预测方程为

x(k+1|k) = F(k)x(k|k)+u(k), (16)

z(k+1|k) = H(k)x(k+1|k), (17)

P(k+1|k) = F(k)P(k|k)FT(k)+Q(k), (18)

其中 F(k)和 H(k)分别为 k时刻系统的状态转移矩

阵和观测矩阵.

观测更新过程:利用 k+1时刻的观测值 z(k+1)

和预测值进行更新

v(k+1) = z(k+1)− z(k+1|k), (19)

S(k+1) = H(k)P(k+1|k)HT(k)+R(k+1), (20)

x(k+1|k+1)

=x(k+1|k)+K(k+1)v(k+1), (21)

P(k+1|k+1)

=P(k+1|k)−K(k+1)×S(k+1)KT(k+1), (22)

K(k+1) = P(k+1|k)HT(k)S−1(k+1), (23)

其中 v(k)为 k+1时刻的新息; S(k+1)是新息的理

论协方差矩阵.

模糊算法就是要在线的调整观测噪声的协方

差矩阵 R的值.算法本质是根据新息实际协方差矩

阵和理论协方差矩阵的差值大小利用模糊系统来

调整观测噪声协方差矩阵 R的大小. 新息实际协方

差矩阵 Clnnk 方程为

Clnnk = v(k)vT(k). (24)

我们的目标是让实际的协方差矩阵 Clnnk 与理论的

协方差矩阵 S(k)之间的差值最小,即使 ∆Clnnk最小:

∆Clnnk =Clnnk −S(k). (25)

在这里用一个单输入单输出的模糊系统.系统

的输入是 ∆Clnnk 的对角元素值 ∆Clnnk( j, j),输出是

观测噪声协方差矩阵 R的对角元素该变量 ∆R( j, j).

模糊系统的输入采用三个隶属度函数: 负值 (N),零

值 (Z),正值 (P).三条模糊规则为

IF ∆ Clnnk( j, j) is N THEN ∆R( j, j) = w1,

IF ∆ Clnnk( j, j) is N THEN ∆R( j, j) = w2,

IF ∆ Clnnk( j, j) is N THEN ∆R( j, j) = w3.

三 条 隶 属 度 函 数 采 用 高 斯 型 分 别

为 guass1(a1,b1), guass2(a2,b2), guass3(a3,b3).

因 此 模 糊 系 统 中 需 要 确 定 的 值 为

a1,a2,a3,b1,b2,b3,w1,w2,w3.

3.2 利用改进的雁群 PSO 训练模糊自适
应扩展卡尔曼滤波 SLAM算法

利用改进的粒子群算法来对模糊系统进

行训练, 其中模糊系统的变量为 9 维变量 x =

[a1,a2,a3,b1,b2,b3,w1,w2,w3]
T, 目标是使实际协方

差与理论协方差之间差值最小,因此目标函数为

f =
Nobs

∑
nobs

(
∑ jcnobs

j=1 |∆Clnnk( j, j)|2

jcnobs

)
N−1

obs, (26)

其中Nobs为在迭代中总的观测次数, jcnobs为 ∆Clnnk

对角元素的个数.

4 实验结果分析

假设机器人的仿真环境为平面矩形区域,环境

中有 28个特征点和 14个路径点,分别用 “*”和 “o”

表示. 图 1使用雁群 PSO模糊自适应扩展卡尔曼滤

波 SLAM算法得到的地图,图 2为使用改进的雁群

PSO模糊自适应扩展卡尔曼滤波 SLAM算法得到

的地图,图中红色的 “+”为机器人建立的特征点的

位置.
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从图 1和图 2中能够看出用改进后的雁群 PSO

训练的模糊自适应卡尔曼滤波 SLAM算法在特征

点估计和机器人自身位姿估计上比雁群 PSO训练

的模糊自适应卡尔曼滤波 SLAM算法有很大的提

高. 图 1中估计的特征点与实际特征点的位置偏差

很大并且图中有很多被误判为特征点的点,图 2中

估计特征点与实际特征点的位置比图 1 有很大的

改善,并且没有误判的特征点.

图 1 雁群 PSO模糊自适应 EKF-SLAM地图

图 2 改进的雁群 PSO模糊自适应 EKF-SLAM地图

图 3 雁群 PSO模糊自适应 EKF-SLAM机器人定位 x方向误差

图 4 改进雁群 PSO 模糊自适应 EKF-SLAM 机器人定位 x

方向误差

图 5 雁群 PSO模糊自适应 EKF-SLAM机器人定位 y方向误差

图 6 改进雁群 PSO模糊自适应 EKF-SLAM机器人定位 y方
向误差

图 3至图 8分别为基于改进后的雁群 PSO的

模糊自适应扩展卡尔曼滤波 SLAM算法与基于雁

群 PSO的模糊自适应扩展卡尔曼滤波 SLAM算法

估计的机器人自身位姿分别在地图中 x方向、y方

向的定位误差即角度 φ 的定位误差. 从图中可以看

出 x方向的误差最大值由 2降低到 1, y方向的误差

最大值由 2.5降低至 1,角度误差的最大值由 0.8降

至 0.6,模糊自适应扩展卡尔曼滤波 SLAM算法性

能有了很大提高.
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图 7 雁群 PSO模糊自适应 EKF-SLAM机器人定位角度误差

5 结 论

对于扩展卡尔曼滤波 SLAM中系统噪声和观

测噪声先验特性的不准确的缺点,本文利用基于模

糊规则的自适应卡尔曼滤波算法,通过检测预测值

与实际观测值的差值的协方差矩阵与理想协方差

矩阵的差值来在线对噪声进行模糊调节,从而抑制

时变噪声对滤波稳定性造成的影响.但模糊逻辑精

图 8 改进雁群 PSO模糊自适应 EKF-SLAM机器人定位角度
误差

度不高, 缺乏系统化参数设计方法. 针对模糊逻辑

的缺点本文利用分数阶微积分和混沌思想来改进

的雁群粒子群优化算法并用改进的雁群粒子群算

法来对模糊逻辑关键参数进行优化,提高模糊逻辑

调节精度, 进而提高卡尔曼滤波 SLAM 算法的性

能.通过仿真基于改进的雁群 PSO模糊自适应扩展

卡尔曼滤波 SLAM算法性能有很大提高,并且这种

改进雁群粒子群算法的思想也可以用到其他的生

物群智能算法的改进中.
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Abstract
Because the problem of the extended Kalman filter localization and mapping algorithm priori noise model is difficult to manage,

this paper proposes an improved wild geese particle swarm algorithm based on the fuzzy adaptive Kalman filter localization and
mapping algorithm. We take advantage of the the fractional calculus to improve particle speed of evolution, and make use of chaos
to improve the initialization of the particle and the precocious one when processing. The improvement of wild geese particle swarm
algorithm is shown in convergence rate and avoiding premature, then they can improve geese particle swarm algorithm for fuzzy
adaptive extended Kalman filter localization and mapping algorithm training. in contrast with geese particle swarm algorithm fuzzy
adaptive extended Kalman filter simultaneous localization and mapping algorithm, the new algorithm positioning and composition has
greatly improved.
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